
ITUPublications International Telecommunication Union

Recommendations Standardization Sector

Recommendation

ITU-T Y.3061 (12/2023)

SERIES Y: Global information infrastructure, Internet
protocol aspects, next-generation networks, Internet of
Things and smart cities

Future networks

Autonomous Networks - Architecture
framework

 CAUTION!
PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation. It will be
replaced by the published version after editing. Therefore, there will be differences between this
prepublication and the published version.

ITU-T Y-SERIES RECOMMENDATIONS

Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

GLOBAL INFORMATION INFRASTRUCTURE Y.100-Y.999
 General Y.100-Y.199
 Services, applications and middleware Y.200-Y.299
 Network aspects Y.300-Y.399
 Interfaces and protocols Y.400-Y.499
 Numbering, addressing and naming Y.500-Y.599
 Operation, administration and maintenance Y.600-Y.699
 Security Y.700-Y.799
 Performances Y.800-Y.899
INTERNET PROTOCOL ASPECTS Y.1000-Y.1999
 General Y.1000-Y.1099
 Services and applications Y.1100-Y.1199
 Architecture, access, network capabilities and resource management Y.1200-Y.1299
 Transport Y.1300-Y.1399
 Interworking Y.1400-Y.1499
 Quality of service and network performance Y.1500-Y.1599
 Signalling Y.1600-Y.1699
 Operation, administration and maintenance Y.1700-Y.1799
 Charging Y.1800-Y.1899
 IPTV over NGN Y.1900-Y.1999
NEXT GENERATION NETWORKS Y.2000-Y.2999
 Frameworks and functional architecture models Y.2000-Y.2099
 Quality of Service and performance Y.2100-Y.2199
 Service aspects: Service capabilities and service architecture Y.2200-Y.2249
 Service aspects: Interoperability of services and networks in NGN Y.2250-Y.2299
 Enhancements to NGN Y.2300-Y.2399
 Network management Y.2400-Y.2499
 Computing power networks Y.2500-Y.2599
 Packet-based Networks Y.2600-Y.2699
 Security Y.2700-Y.2799
 Generalized mobility Y.2800-Y.2899
 Carrier grade open environment Y.2900-Y.2999
FUTURE NETWORKS Y.3000-Y.3499
CLOUD COMPUTING Y.3500-Y.3599
BIG DATA Y.3600-Y.3799
QUANTUM KEY DISTRIBUTION NETWORKS Y.3800-Y.3999
INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES Y.4000-Y.4999
 General Y.4000-Y.4049
 Definitions and terminologies Y.4050-Y.4099
 Requirements and use cases Y.4100-Y.4249
 Infrastructure, connectivity and networks Y.4250-Y.4399
 Frameworks, architectures and protocols Y.4400-Y.4549
 Services, applications, computation and data processing Y.4550-Y.4699
 Management, control and performance Y.4700-Y.4799
 Identification and security Y.4800-Y.4899
 Evaluation and assessment Y.4900-Y.4999

For further details, please refer to the list of ITU-T Recommendations.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 1

Recommendation ITU-T Y.3061

Autonomous Networks - Architecture framework

Summary

This Recommendation provides requirements, architecture, components and related sequence

diagrams which together comprise an architecture framework for autonomous networks.

The scope of this Recommendation includes:

- Requirements for the architecture;

- Description of the architecture and its components;

- Sequence diagrams explaining the interactions between the architecture components.

History *

Edition Recommendation Approval Study Group Unique ID

1.0 ITU-T Y.3061 2023-12-14 13 11.1002/1000/15735

Keywords

Architecture framework, autonomous networks, components, dynamic adaptation, experimentation,

exploratory evolution, requirements, sequence diagram.

* To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID.

https://handle.itu.int/

Rec. ITU-T Y.3061 (12/2023) - prepublished version 2

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had [not] received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2024

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

Rec. ITU-T Y.3061 (12/2023) - prepublished version 3

Table of Contents

 Page

1. Scope .. 4

2. References... 4

3. Definitions .. 4

3.1. Terms defined elsewhere .. 4

3.2. Terms defined in this Recommendation ... 5

4. Abbreviations and acronyms .. 6

5. Conventions .. 7

6. Introduction .. 7

7. Requirements for the architecture ... 9

7.1. Requirements for Exploratory Evolution ... 9

7.2. Requirements for Online Experimentation ... 15

7.3. Requirements for Dynamic Adaptation .. 17

7.4. Requirements for Knowledge ... 22

7.5. Requirements for Autonomous Network Orchestration ... 24

8. Architecture Framework Description ... 27

8.1 High-level Architecture Framework ... 27

8.2 Description of controller ... 29

8.3 Description of the sub-systems and their components ... 30

9. Sequence diagrams ... 40

9.1 Exploratory Evolution of Controllers ... 40

9.2 Experimentation for Controllers ... 42

9.3 Dynamic adaptation of Controllers .. 43

10. Security Considerations .. 46

Appendix I An example realisation of the architecture framework for Autonomous

Networks with technology specific underlays .. 47

I.1. Examples of deployment locations of controllers .. 47

I.2. Example realisation of Exploratory Evolution ... 48

I.3. Example realisation of Online Experimentation .. 48

I.4. Example realisation of Dynamic Adaptation ... 48

Appendix II Self-reflective use of the AN architecture .. 49

Appendix III External functionalities .. 51

Bibliography... 52

Rec. ITU-T Y.3061 (12/2023) - prepublished version 4

Recommendation ITU-T Y.3061

Autonomous Networks - Architecture framework

1. Scope

This Recommendation provides requirements, architecture components and related sequence

diagrams which together comprise an architecture framework for autonomous networks.

The scope of this Recommendation includes:

- Requirements for the architecture

- Description of the architecture and its components

- Sequence diagrams explaining the interactions between the architecture components

2. References

[ITU-T Y.2701] ITU-T Recommendation Y.2701 (2007), Security requirements for NGN

release 1[ITU-T Y.3101] ITU-T Recommendation Y.3101 (2018),

Requirements of the IMT-2020 network

[ITU-T Y.3115] ITU-T Recommendation Y.3115 (2022), “AI enabled cross-domain network

architectural requirements and framework for future networks including IMT-

2020”

[ITU-T Y.3172] ITU-T Recommendation Y.3172 (2019), Architectural framework for machine

learning in future networks including IMT-2020
[ITU-T Y.3177] ITU-T Recommendation Y.3177 (2021), Architectural framework for artificial

intelligence-based network automation and fault management in future

networks including IMT-2020

[ITU-T Y.3320] ITU-T Recommendation Y.3320 (2014), Global information infrastructure,

internet protocol aspects and next-generation networks

3. Definitions

3.1. Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 knowledge [b-ETSI GS ENI 005]: analysis of data and information, resulting in an

understanding of what the data and information mean.

NOTE - Knowledge represents a set of patterns that are used to explain, as well as predict, what has

happened, is happening, or is possible to happen in the future; it is based on acquisition of data,

information, and skills through experience and education.

3.1.2 machine learning (ML) [ITU-T Y.3172]: Processes that enable computational systems to

understnd data and gain knowledge from it without necessarily being explicitly programmed.

NOTE 1 – This definition is adapted from [b-ETSI GR ENI 004].

NOTE 2 – Supervised machine learning and unsupervised machine learning are two examples of

machine learning types.

3.1.3 machine learning model [ITU-T Y.3172]: Model created by applying machine learning

techniques to data to learn from.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 5

NOTE 1 – A machine learning model is used to generate predictions (e.g., regression, classification,

clustering) on new (untrained) data.

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the form of a

software (e.g., virtual machine, container) or hardware component (e.g., IoT device).

NOTE 3 – Machine learning techniques include learning algorithms (e.g., learning the function that

maps input data attributes to output data).

3.1.4 closed loop [ITU-T Y.3115]: A type of control mechanism in which the outputs and

behaviour of a system are monitored and analysed, and the behaviour of the system is adjusted so

that improvements may be achieved towards definable goals.

NOTE 1 – Observe, Orient, Decide and Act (OODA) [b-OODA], MAPE-K [b-MAPE-K] are

examples of closed loop mechanism.

NOTE 2 – Examples of definable goal types are optimization of network resources' utilization and

automated service fulfilment and assurance. Goals may be defined using declarative mechanisms.

NOTE 3 – The system may consist of a set of managed entities, workflows and/or processes in a

network.

3.2. Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 adaptation controller: A controller responsible for selecting candidate controllers ready for

integration and for executing their integration in the underlay network.

3.2.2 AN sandbox: An environment in which controllers can be deployed, experimentally

validated with the help of models of underlay networks, and their effects upon an underlay network

evaluated, without affecting the underlay network.

NOTE - Domain specific models, if available, may be used in experimental validation of

controllers. Examples of domain specific models are packet flow models for various types of

applications such as video, chat, etc., and radio channel propagation models for various channel

conditions.

3.2.3 autonomy engine: An environment where new controllers are autonomously generated and

validated.

3.2.4 controller: A workflow, open loop or closed loop of a system under control in an

autonomous network, composed of modules, integrated in a specific sequence, using interfaces

exposed by the modules, to solve a specific problem or satisfy a given requirement.

NOTE 1 – Modules composing the controller may be workflows, open loops, or closed loops.

NOTE 2 - Modules can be developed independently of the system under control before being

integrated into the system under control.

NOTE 3- Examples of system under control are managed entities, workflows and/or processes in an

IMT-2020 network.

NOTE 4 – Exploratory evolution and real-time responsive online experimentation are examples of

processes independent of the development of modules.

3.2.5 controller design: A low-level, non-executable representation of a controller containing

modules, their configurations, and their parameter values which is used to instantiate a controller.

3.2.6 controller specification: A high-level, non-executable representation of a controller with

the metadata corresponding to the mandatory functionality of the controller and a utility function to

be achieved.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 6

3.2.7 evolution controller: A controller responsible for the evolution of controllers by

manipulating the module instance used within a controller, the structure or topology of connections

between modules in a controller and/or the values chosen for the module(s) parameters.

3.2.8 experimentation: The process of executing the generated potential scenarios of

experimentation and trials upon the controllers, within the parameters of the scenarios and trials and

then collecting the results.

NOTE - Example of experimentation is validating a traffic optimization controller against selected

scenarios in a simulation tool, to find the controller performance with respect to a set of pre-defined

service level agreements.

3.2.9 experimentation controller: A controller which generates potential scenarios of

experimentation based on controller specifications and additional information as provided by the

knowledge base, executes the scenarios in the AN Sandbox, collates and validates the results of the

experimentation.

3.2.10 knowledge base: An environment which manages storage, querying, export, import,

optimization and update of knowledge.

3.2.11 managed entity: A resource, service or controller which is managed

NOTE - An example of a controller as a managed entity, is a function tasked with traffic

optimization in the user plane. In this case, the managed entity (controller) exposes interfaces or

APIs to enable the collection of information, configuration and execution of the controller.

3.2.12 open loop: A type of control mechanism in which the outputs of the system under control

are not used to adjust the behaviour of the system.

3.2.13 workflow: sequence of activities to describe and/or realize a given task executed by a

system.

4. Abbreviations and acronyms

This document uses the following abbreviations and acronyms:

AI Artificial Intelligence

AN Autonomous Networks

API Application Programming Interface

AR Augmented Reality

CDN Content Distribution Network

CI/CD Continuous Integration and Continuous Delivery

CL Closed loop

CN Core Network

DNN Deep Neural Network

DNS Domain Name Service

E2E End to End

FPGA Field Programmable Gate Array

KB Knowledge Base

KPI Key Performance Indicator

MANO Management and Orchestration

Rec. ITU-T Y.3061 (12/2023) - prepublished version 7

MEC Multi access Edge Computing

ML Machine Learning

NF Network Function

NFV Network Function virtualisation

ONAP Open Networking Automation Platform

OSM Open Source Management and Orchestration

PNF Physical Network Function

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RIC RAN Intelligence Controller

RCA Root Cause Analysis

SDK

SLA

Software Development Kit

Service Level Agreement

TOSCA Topology and Orchestration Specification for Cloud Applications

UE User Equipment

VNF Virtualized Network Function

VR Virtual Reality

YAML Yet Another Meta Language

ZSM Zero Touch Service Management

5. Conventions

In this Recommendation:

The keywords "is required to" indicate a requirement which must be strictly followed and from which

no deviation is permitted, if conformance to this Recommendation is to be claimed.

The keywords "is recommended" indicate a requirement which is recommended but which is not

absolutely required. Thus, this requirement need not be present to claim conformance.

The keywords "can optionally" indicate an optional requirement which is permissible, without

implying any sense of being recommended. This term is not intended to imply that the vendor's

implementation must provide the option, and the feature can be optionally enabled by the network

operator/service provider. Rather, it means the vendor may optionally provide the feature and still

claim conformance with this Recommendation.

6. Introduction

Autonomous networks (AN) are networks that possess the capabilities to monitor, operate, recover,

heal, protect, optimize, and reconfigure themselves; these are commonly known as the self-*

properties [b-Kephart 2003].

 The application of various machine learning (ML) approaches to a single or a set of targeted use

cases aims to automate the operation or management, reduce cost, optimise the resources used, or

automatically detect or predict unusual situations or circumstances [b-ITU-T Y.Supp 55].

Rec. ITU-T Y.3061 (12/2023) - prepublished version 8

One common problem in the application of ML to these use cases is the problem of model drift.

Model drift is the phenomena whereby either the goal of the ML model changes overtime

(conceptual drift) or when the available data no longer enables the model to form the same

relationships (data drift). This problem can be seen most obviously in financial markets, where

market predictions must be frequently revisited to address the reality that the operating environment

(the market) has changed compared to when the model was made. Several tools and frameworks

have been proposed to help address these issues [b-capacity-allocation], [b-evolution], [b-bayesian-

radio], [b-RL], [b-AUTOML], [b-AUTOML-ZERO].

The reality is that ML is one consideration that is required to achieve the autonomous operation of

the network. Other considerations include emergence of new software and hardware technologies;

introduction of new services to the network and new ways of using the networks [b-NGMN-5G];

definitions change – what is good today is not necessarily good tomorrow.

As the operational environment and context of our networks change, so too must the processes of

control that we use to operate them.

Closed-loop (CL) software control has become an increasingly popular way to enable the automatic

operation of the network. There are a range of different CL approaches in different domains:

efficient and simple, strategic, tactical, centralised, distributed, intelligent, adaptative, hierarchical

[b-Rossi 2020], [b-ITU-JFET]. Irrespective of the approach or purpose, the logical concept of a CL

[b-Kephart 2003], [b-OODA] is a self-contained entity with the ability to operate or monitor one or

more managed entities. In this context, a CL suffers the same limitation in achieving autonomous

network operation since being bound by the purpose for which it was designed, even in the cases

when its design includes the support of some dynamic adaptive capabilities.

The conclusion of the above is that no matter the domain of operation, technology, algorithm,

intelligence, or data set used, an autonomous network will require the ability to adapt beyond pre-

defined operational bounds not only in logic deployed to operate and manage of the network but

also in the process that it uses to generate such deployable logic, so called “design-time procedures”

[ITU Y.3177].

The key purpose and goal of the architecture described in this Recommendation is to support the

continuous evolutionary-driven creation, validation, and application of a set of controllers to a

network and its services such that the network and its services may become autonomous. A

controller is a workflow, closed loop or open loop of a system under control. It is composed of

modules, integrated in a specific sequence, and using interfaces exposed by the modules, to solve a

specific problem or satisfy a given requirement. Modules composing the controller may be

workflows, open loops, or closed loops and can be developed independently of the system under

control before being integrated into the system under control.

The continuous evolutionary-driven creation, validation and application of controllers is used in the

use cases to realize autonomous networks [b-ITU-T Y.Supp 71] and the key concepts (see below)

required to enable them.

In this way, the traditional autonomic self-* principles [b-Kephart 2003] are attributed to the

controllers which are applied to the network and its services. The responsibility for adaptation of

controllers themselves over time is the responsibility of the architecture specified in this

Recommendation. The separation of the adaptation of a controller from the application of a

controller to the network and its services enables the complimentary efforts in standards and

research for CL, ML, as well as the general area of network management in the pursuit of

autonomous networks and directly addresses need for automatic design-time procedures.

The main concepts behind autonomous networks which are elaborated in this Recommendation are

exploratory evolution, real-time responsive online experimentation and dynamic adaptation.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 9

The concept of exploratory evolution introduces the mechanisms and processes of exploration and

evolution to adapt controllers in response to changes in the underlay network. These processes

generate new controllers or update (evolve) existing controllers to respond to such changes and

solve the situation or task at hand more appropriately.

The continuous process, based on monitoring and optimization of deployed controllers in the

underlay network, is called real-time responsive online experimentation.

NOTE - Real-time responsive online experimentation is also called “experimentation” in this

Recommendation.

Dynamic adaptation is the final concept in equipping the network with autonomy and the ability to

handle new and hitherto unseen changes in network scenarios.

With consideration of the above concepts, an autonomous network is a network which can generate,

adapt, and integrate controllers at run-time using network-specific information and can realize

exploratory evolution, real-time responsive online experimentation and dynamic adaptation.

In addition, the requirements for the architecture below also consider the following concepts:

knowledge in autonomous networks and orchestration in autonomous networks.

The analysis of data and information from the network, resulting in an understanding of what the

data and information mean, is referred to as knowledge. Knowledge is used in autonomous

networks for supporting the continuous exploratory evolution, realtime online experimental

validation, and dynamic adaptation.

Orchestration involves managing workflows and processes in the AN and steps in the lifecycle of

controllers. This also requires coordination with various other functions in the AN as well as outside

the AN.

7. Requirements for the architecture

This clause describes the requirements for the AN architecture.

7.1. Requirements for Exploratory Evolution

The following are requirements with respect to exploratory evolution in autonomous networks.

Requirement Description

AN-arch-evo-req-001
The AN architecture is required to have the ability to generate and

update controller designs.

AN-arch-evo-req-002
The AN architecture is required to have the ability to generate potential

scenarios of exploratory evolution, taking the controller designs as input.

NOTE - Specific mechanisms or algorithms used for evolution are out of

scope of this Recommendation.

AN-arch-evo-req-003
The AN architecture is required to have the ability to execute the

potential scenarios of exploratory evolution, taking the controller

designs as input and to collate the output in the form of evolvable

controller designs.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 10

NOTE - Several rounds of evolutions may be applied on the same set of

controller designs.

AN-arch-evo-req-004
The AN architecture is required to support the generation of potential

configurations for the integration of controllers to specific underlay

networks.

NOTE 1 – Configurations may include reference points, API formats,

data models, etc. This generation of configurations may take the

controller designs as input along with the description or metadata related

to the underlay networks.

NOTE 2 – While the specific configurations for the integration of

controllers for specific use cases is out of scope of this

Recommendation, the definition of acceptable formats for representing

such configurations is for further study.

NOTE 3 - Examples of underlay networks are edge networks, core

networks, management plane, CI/CD pipelines.

AN-arch-evo-req-005
The AN architecture is required to enable the management of points of

metadata exchange in the AN workflow, with a peer entity.

NOTE 1 – Examples of metadata regarding the AN workflow include

current capabilities, status and context of the AN components, including

knowledge base, controllers, orchestrators, simulators, etc. Managing

may include identifying actors and points in the AN workflow, capturing

metadata regarding the workflow which can then be exchanged.

NOTE 2 - Examples of points of metadata exchange in the AN

workflow are the different stages of experimentation and dynamic

adaptation.

NOTE 3 - The format used for the metadata exchange is out of scope of

this Recommendation.

NOTE 4 – Examples of AN workflows include the generation of

potential experimentation scenarios and the generation of potential

evolution scenarios.

NOTE 5 - Peers may include humans and machines.

AN-arch-evo-req-006
The AN architecture is required to have the ability to integrate the

impacts of metadata exchange with peer entities involved in AN

workflows.

NOTE – Examples of impacts of the metadata exchange are updates of

knowledge base and selection of API versions to use for adaptation.

AN-arch-evo-req-007
The AN architecture is required to support the optimization of

controllers.

NOTE – Examples of optimization of controllers are optimization of

adaptation mechanisms like data collection, data quality and frequency.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 11

Other examples are optimization of closed loop implementations like

Root Cause Analysis (RCA) mechanisms and recommendations on

better algorithms for achieving the same objective. Other examples are

formation or evolution of new controllers to address new or unforeseen

problems in the underlay network.

AN-arch-evo-req-008
The AN architecture is required to support the ability of discovering the

characteristics of controllers which are relevant for enabling evolution.

NOTE - Examples of characteristics of controllers which are relevant for

evolution are: capabilities exposed by the controllers, and requirements

to be satisfied for the controllers.

AN-arch-evo-req-009
The AN architecture is required to support the capability of

recommending modules which can satisfy the characteristics of

controllers.

AN-arch-evo-req-010
The AN architecture is required to enable the integration of controllers

from different domains to achieve complex use cases.

NOTE - For example, AN may integrate controllers in different domains

of the network, like RAN and core network domains.

AN-arch-evo-req-011
The AN architecture is required to enable the utilization of declarative

specifications of use cases while deciding the design, deployment and

management of controllers.

AN-arch-evo-req-012
The AN architecture is required to allow for the utilization of declarative

specifications of use cases to capture both use cases’ requirements from

applications and deployment requirements from underlay networks.

AN-arch-evo-req-013
The AN architecture is required to support the capability of choosing the

compatible set of interfaces to integrate with underlay network services.

NOTE – Example of interfaces that may be used include interfaces to

monitor the services and controllers in the underlay networks.

AN-arch-evo-req-014
The AN architecture is required to support the creation and/or

recommendation of candidate designs for potential network services and

interfaces in the underlay networks, which may possibly satisfy new use

cases.

NOTE – Design creation may also be triggered in response to an

observed fault in the underlay networks.

AN-arch-evo-req-015
The AN architecture is required to consider the use case specific

requirements (including operator preferences) while deciding the

operator preferences for design, deployment, management of controllers,

including connectivity options between various domains.

NOTE - For example, in rural areas, end-users may have usage patterns

with characteristics depending on applications (e.g., low mobility, high

bandwidth). The choice of last mile connectivity options may be

influenced by such preferences.

AN-arch-evo-req-016
The AN architecture is required to support capabilities enabling the

evolution of inter-domain connectivity among controllers deployed in

various domains of the underlay network.

AN-arch-evo-req-017
The AN architecture is required to support the adaptation to the

evolution of applications at run time.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 12

NOTE – An example of adapting to the evolution of applications at run

time is onboarding new applications or changes in existing applications

deployed by the service providers in the underlay network.

AN-arch-evo-req-018
The AN architecture is required to support the adaptation to changes in

the external systems that the AN interfaces with.

NOTE - Examples of external systems are various management and

orchestration systems, policies and corresponding management systems,

workflow management systems, user management systems. External

systems deployed by the operator may be provided by multiple vendors.

AN-arch-evo-req-019
The AN architecture is required to support the ability of recommending

changes in capabilities of monitoring, configuring and analysis of

parameters from underlay networks.

AN-arch-evo-req-020
The AN architecture is required to support learning of metrics’

derivations from collected parameters and measurements, where such

learnings may change.

NOTE – Derivation of metrics may use AI/ML techniques. Derivation

mechanisms may change over a period of time or events. In such cases,

mechanisms such as re-training may be applied to update the derivation

models.

AN-arch-evo-req-021
The AN architecture is required to support the derivation of

requirements for service life cycle management in underlay networks

based on analysis of requirements from different domains in the

network.

NOTE 1 - For example, closed loops for optimization in RAN may be

configured based on analysis of requirements from the CN.

NOTE 2 - Service life cycle management includes resource allocation,

scaling and optimization.

AN-arch-evo-req-022
The AN architecture is required to support optimization of intents based

on monitoring of the performance of derived controllers deployed in

various domains of the underlay network and their life cycles.

NOTE - For example, derivation of intents in the CN may be optimized

based on the feedback obtained from monitoring the (derived) closed

loops deployed in the RAN.

AN-arch-evo-req-023
The AN architecture is required to support application development

capabilities to automate the design and instantiation of underlay network

services.

NOTE - For example, platforms such as Kubernetes [b-kubernetes],

multi access edge computing (MEC) [b-ETSI GS MEC 012] or O-RAN

[b-ORAN] may expose SDKs or APIs for automation of design and

deployment of network services.

AN-arch-evo-req-024
The AN architecture is required to support application development

capabilities to automate the design and/or instantiation of controllers in

various levels of the underlay network.

NOTE - For example, platforms such as ONF [b-ONF], O-RAN and

ONAP [b-ONAP] allow design and deployment of xApps and AI/ML

models respectively. In some cases, 3rd party repositories may be

accessed to select and deploy xApps and/or AI/ML models.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 13

AN-arch-evo-req-025
The AN architecture is required to enable designing, developing and

deploying applications by the AN at various levels of the underlay network.

NOTE 1- For example, in coordination with the edge network

orchestrating function, AN may provide a design for vertical

applications to be deployed at a specific edge location.

NOTE 2 – The design and development of applications may be achieved

in coordination with CI/CD pipelines.

AN-arch-evo-req-026
The AN architecture is required to support capabilities for monitoring of

the feedback from controllers deployed at various domains of the

underlay network in order to optimize the design, development and

deployment of controllers in general.

NOTE – For example, in coordination with the edge network

orchestrating function, AN may optimize the existing design for vertical

applications to be deployed at a specific edge location.

AN-arch-evo-req-027
The AN architecture is required to support the ability of triggering re-

design of network services based on monitoring of network services in

underlay networks.

AN-arch-evo-req-028
The AN architecture is required to provide means for the AN to trigger

an evolution of network services based on the monitoring of their

lifecycle in underlay networks.

AN-arch-evo-req-029
The AN architecture is required to AN support usage of various types of

controllers for problem discovery in various domains of the underlay

network.

NOTE – For example, data collection agents may be designed separately

from the analysis. Data collection agents may be deployed in the edge

network whereas analysis may be performed at the core cloud.

AN-arch-evo-req-030
The AN architecture is required to allow the AN providing evolution of

controllers as a service to underlay networks.

NOTE – Underlay networks may have different types of controllers

deployed including from 3rd parties. AN discovers the characteristics of

different types of controllers and provides evolution as a service which

results in evolved controller candidates for deployment in the underlay

networks.

AN-arch-evo-req-031
The AN architecture is required to support capabilities for the AN to

discover and utilize different evolution services for controllers.

NOTE – Underlay networks may need evolution of controllers deployed

including from 3rd parties. AN discovers the characteristics of different

types of evolution services for controllers and utilizes them. Utilizing

the services of evolution as a service may include providing intents as

inputs, providing evolution algorithms as inputs, providing module

and/or controller repositories as input and accepting evolved controller

candidates as outputs.

AN-arch-evo-req-032
The AN architecture is required to support the ability for the AN to

customize controllers which can be deployed in various types of

underlay networks, based on the characteristics of these underlay

networks.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 14

AN-arch-evo-req-033
The AN architecture is required to support decomposition of controller

designs into parts, which can be mapped to various parts of the underlay

network based on the capabilities and requirements.

NOTE 1 – Example of decomposition is splitting of user plane programs

into modules which can be hosted in various user plane functions in the

underlay network.

NOTE 2 – Example of considerations while decomposition of controller

designs is resource requirements of the controllers and capabilities of the

underlay network.

AN-arch-evo-req-034
The AN architecture is recommended to support monitoring and

optimization of decomposition, design, placement or deployment of

controllers in various parts of the underlay network.

AN-arch-evo-req-035
The AN architecture is required to support composition of controllers

deployed in various parts of the underlay network to form complex

controllers.

AN-arch-evo-req-036
The AN architecture is recommended to enable the integration and the

plugin of algorithms into controllers.

NOTE – Algorithms may be third party provided algorithms, machine

learning or artificial intelligence models

AN-arch-evo-req-037
The AN architecture is recommended to enable AN discovery of service

level trade-offs.

NOTE – An example of service level trade-offs is greater accuracy of

inference versus larger resource for training of AI/ML models.

AN-arch-evo-req-038
The AN architecture is recommended to support adaptive design of

controllers using hardware adaptation techniques.

NOTE 1 – Examples of hardware adaptation techniques include

detection of hardware capabilities and adaptive design.

NOTE 2 – Examples of hardware adaptation techniques include

optimization of AI/ML models to FPGA architectures. Adaptive design

may involve considerations of design trade-offs such as energy

efficiency, accuracy, etc.

AN-arch-evo-req-039
The AN architecture is recommended to provide capabilities for the AN

to support feedback and optimization of hardware adaption process for

controllers.

NOTE – For example, the hardware adaptation process for controllers

may involve (1) translation of high-level description to an intermediate

representation amenable to optimization, (2) optimization considering

the design trade-offs, and (3) hardware implementation and integration.

The translation and optimization steps above may themselves be tuned

based on monitoring and feedback from the controllers integrated in the

hardware.

AN-arch-evo-req-040
The AN architecture can optionally support the capability to recommend

new capabilities and requirements for the network functions deployed in

underlay networks.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 15

AN-arch-evo-req-041
The AN architecture can optionally support the ability for the AN to

monitor, optimize and create new inter-controller coordination

strategies, along with the design of new controllers.

NOTE - Optimization may use AI/ML mechanisms.

7.2. Requirements for Online Experimentation

The following are requirements with respect to online experimentation in autonomous networks.

Requirement Description

AN-arch-exp-req-001
The AN architecture is required to support the validation and processing

of controllers’ descriptions, so that exploratory evolution can be applied

on these controller designs.

NOTE 1 – Exploratory evolution may result, among others, in

interconnecting of descriptions together to form complex controller

designs or in a list of controllers.

NOTE 2 – Exploratory evolution may be a triggered, or periodic process

AN-arch-exp-req-002
The AN architecture is required to support the ability to generate the

potential scenarios of experimentation, taking the controller designs as

input.

NOTE 1- Specific configurations and “limits” of experiments may be

specified in the “metadata” and “constraints” related to the controller

designs.

NOTE 2- Specific mechanisms for arriving at the scenarios for

experimentation may use AI/ML analytics or other forms of analytics

and are out of scope of this Recommendation.

AN-arch-exp-req-003
The AN architecture is required to have the ability of executing

experimentations, collating and validating the results of the

experimentations, considering the metadata and constraints and

corresponding controller designs.

NOTE 1- Experimentations may have several phases, for example,

simulation driven, testbed driven or canary test driven. The phases of an

experimentation may be configurable and automated, for example, as

per a workflow.

NOTE 2- The specific success and failure criteria for the experiments

are out of scope of this Recommendation. Acceptable formats for

representing metadata and constraints related to potential success and

failure as related to a use case are for further study.

AN-arch-exp-req-004
The AN architecture is required to support the ability of, verifying,

before the actual integration of controllers into the underlay networks,

that the proposed evolution of the controllers is compatible with the

underlay networks.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 16

AN-arch-exp-req-005
The AN architecture is required to support the automation and

abstraction of the experimentation of underlay network services, .

AN-arch-exp-req-006
The AN architecture is required to provide capabilities for the creation

of experimentation strategies regarding the deployment of

experimentation scenarios, testing and validation of controllers in

sandbox environment.

AN-arch-exp-req-007
The AN architecture is required to support capabilities allowing the AN

to deploy, test and validate controllers in sandbox environment.

AN-arch-exp-req-008
The AN architecture is required to provide capabilities allowing the AN

to analyse the results from experiments in sandbox environment and to

use those results to update the knowledge base, optimize deployed

controllers in underlay networks as well as optimize the experimentation

strategies in sandbox.

NOTE – An example of controller optimization is the selection of new

controllers or modules. An example of experimentation strategies’

optimization is the selection of new test scenarios.

AN-arch-exp-req-009
The AN architecture is required to support the ability for the AN to

experiment the generation of changes to user specific models which may

help ease of experience for users in hitherto unforeseen circumstances.

NOTE - AN experimentation may be done in a sandbox using

simulators.

AN-arch-exp-req-010
The AN architecture is required to support capabilities for the AN to

provide experimentation of controllers as a service to underlay networks.

NOTE – Underlay networks may have different types of controllers

deployed including from 3rd parties. AN discovers the characteristics of

different types of controllers, providing different experimentation

services and results as output for various types of experimentation

scenarios.

AN-arch-exp-req-011
The AN architecture is required to support means for the AN to import

and export configurations for simulators.

NOTE - Examples of configurations for simulators are simulated

network topologies, simulated number of devices, simulated traffic

settings and closed loop interfaces.

AN-arch-exp-req-012
The AN architecture is required to enable the AN to asynchronously

trigger experimentations.

NOTE - Examples of asynchronous triggering are evolution of new set

of controllers which need to be validated, updated network

configurations by operator, provisioning or update of network functions

in the underlay network.

AN-arch-exp-req-013
The AN architecture is required to enable the validation of

experimentation results by the AN.

NOTE - Examples of validation include sanity checks, functional and

non-functional tests.

AN-arch-exp-req-014
The AN architecture is required to support the ability of the AN to

provide feedback on the design of controllers based on the results of

experimentation.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 17

NOTE - Examples of feedback are experimentation logs, test scenarios

along with detailed results.

AN-arch-exp-req-015
The AN architecture is required to support the ability of the AN to

design experimentation scenarios based on use case descriptions.

NOTE - Example of design representation is TOSCA definitions,

derived from use case representations.

AN-arch-exp-req-016
The AN architecture is required to provide the ability for the AN to

discover and utilize other experimentation services for controllers.

NOTE – Underlay networks may have experimentation of controllers

deployed including from 3rd parties. AN discovers the characteristics of

different types of experimentation services for controllers and utilizes

them. Utilizing the services of experimentation as a service may include

providing intents as inputs, providing experimentation algorithms as

inputs, providing module and/or controller repositories as input and

accepting experimentation results as outputs.

AN-arch-exp-req-017
The AN architecture is required to support the AN ability to select the

experimentation scenarios, data generation and simulators, based on the

selected reference points in the underlay network where the controllers

could be deployed.

AN-arch-exp-req-018
The AN architecture is recommended to enable the AN creating a virtual

model of real environment for experimentation.

NOTE – Creating a virtual model may use visualization and perception

mechanisms like Augmented Reality/Virtual Reality (AR/VR),

simulation engines and data generation mechanisms.

AN-arch-exp-req-019
The AN architecture is recommended to support experimentation and

derivation of inter-controller coordination strategies.

NOTE - Examples of inter-controller interactions are resolution of

conflicting goals for various use cases, like power consumption vs.

coverage optimization. Example of a relevant strategy is game theory

based cooperative and non-cooperative mechanisms.

AN-arch-exp-req-020
The AN architecture is recommended to enable the integration of

various forms of testing components including simulators and data

generators, including those provided by third party providers.

AN-arch-exp-req-021
The AN architecture can optionally support experimentation in domain

specific sandbox and optimization of domain specific intents.

NOTE – ML sandbox [ITU-T Y.3172] is an example of domain specific

sandbox.

7.3. Requirements for Dynamic Adaptation

The following are requirements with respect to dynamic adaptation in autonomous networks.

Requirement Description

AN-arch-adp-req-001
The AN architecture is required to support the ability to select candidate

controllers from a set of controllers ready for integration and to execute

Rec. ITU-T Y.3061 (12/2023) - prepublished version 18

their integration to specific underlay networks, taking as input the

generated configurations for integration.

NOTE 1– The specific criteria for selecting controllers for integration

are out of scope of this Recommendation. Formats for representing such

criteria are for further study.

NOTE 2 – The specific mechanisms used for the integration of

controllers to underlay networks are out of scope of this

Recommendation. Examples of such mechanisms are service based

architectures [b-ETSI TS 129 500] and continuous integration

mechanisms [b-ITU-T Y.3525].

AN-arch-adp-req-002
The AN architecture is required to allow AN decisions about new

opportunities for the deployment of controllers in underlay networks.

AN-arch-adp-req-003
The AN architecture is required to allow AN decisions about the

configuration of controllers which are to be deployed in underlay

networks.

AN-arch-adp-req-004
The AN architecture is required to enable the reporting and monitoring

of AN components and procedures by humans and/or other automation

mechanisms.

AN-arch-adp-req-005
The AN architecture is required to support the discovery of deployed

controllers in the underlay networks, including those deployed by third

party providers.

AN-arch-adp-req-006
 The AN architecture is required to support the discovery and

consumption of services provided by service management frameworks.

NOTE - Examples of service management frameworks are ONAP [b-

ONAP] and OSM [b-OSM].

AN-arch-adp-req-007
The AN architecture is required to support the discovery of the

interfaces with underlay networks used for integration.

NOTE - Interfaces with underlay networks may use specific APIs, e.g.,

APIs for data collection, for configuration of network functions, etc.

Discovery of interfaces may involve API metadata including

parameters, versions, range of parameters.

AN-arch-adp-req-008
The AN architecture is required to enable, on a per use case basis, the

discovery of the underlay networks’ specific parameters candidate for

optimization, data points for collection in the underlay network and the

relevant KPIs for tracking.

NOTE - For example, in edge deployments, underlay networks may use

multi access edge computing (MEC) APIs [b-ETSI GS MEC 012].

AN-arch-adp-req-009
The AN architecture is required to support the ability of customizing the

integration of controllers in underlay networks, considering the

integration options exposed by the underlay networks.

NOTE – Examples of integration options are interfaces, parameters and

configurations exposed by the underlay networks. Examples of underlay

networks are networks for industry vertical applications.

AN-arch-adp-req-010
The AN architecture is required to support the automation and

abstraction of the evolution of underlay network services.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 19

NOTE 1 – Examples of evolution of underlay network services include

updates to support new features, migration to new service platforms and

technologies.

NOTE 2 – Service provider may monitor the evolution but do not

manually execute the evolution of underlay network services.

AN-arch-adp-req-011
The AN architecture is required to support the discovery of service

management frameworks used by underlay networks.

NOTE - This may help in managing and automating the lifecycle of

underlay network services by the AN.

AN-arch-adp-req-012
The AN architecture is required to support the end-to-end integration of

controllers, taking into account the evolution of connectivity options in

the underlay networks.

NOTE - For example, access network may be using various different

types of connectivity technologies which may evolve over a period of

time.

AN-arch-adp-req-013
The AN architecture is required to support the monitoring of the

dynamic changes in capabilities of monitoring, configuration and

analysis of parameters from underlay networks.

NOTE - Given the independent evolution of controllers, of the underlay

networks and of the applications deployed, mechanisms such as those

for discovery, publishing and subscription may be used to provide

flexibility in monitoring parameters.

AN-arch-adp-req-014
The AN architecture is required to support the utilization of the dynamic

changes in capabilities of monitoring, configuring and analysis of

parameters from underlay networks.

AN-arch-adp-req-015
The AN architecture is required to support capabilities enabling the

deployment of controllers which utilize both simulated and real

networks as underlay networks.

AN-arch-adp-req-016
The AN architecture is required to support capabilities for the discovery

of topology and architecture connectivity/split options and capabilities

in the underlay networks and to consider such options while integrating

controllers in underlay networks.

NOTE - For example, 3GPP networks may have various architecture

split options [b-3GPP TS 38.801].

AN-arch-adp-req-017
The AN architecture is required to have capabilities to integrate

intelligent controllers at various levels of the underlay network.

NOTE - Examples of intelligent controllers are controllers integrating

AI/ML models.

AN-arch-adp-req-018
The AN architecture is required to enable the integration of controllers

to network management and application management at various levels

of the underlay network.

NOTE - Examples of functionalities of such controllers are placement of

functions and choice of architecture splits.

AN-arch-adp-req-019
The AN architecture is required to enable AN run-time discovery of

new use cases for optimization in underlay networks.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 20

AN-arch-adp-req-020
The AN architecture is required to AN support usage of various types of

controllers for problem isolation in various domains of the underlay

network.

NOTE - Collaborative communication between controllers may be used

to isolate the problem.

AN-arch-adp-req-021
The AN architecture is required to AN support design and/or selection

of controllers based on the problem isolated in the underlay network.

NOTE - For example, 3rd party controllers from repositories may be

selected to address the problem.

AN-arch-adp-req-022
The AN architecture is required to AN support deployment of new

controllers with new capabilities to address the problems detected in the

underlay network.

AN-arch-adp-req-023
The AN architecture is required to support the AN ability to select

reference points in the underlay network where controllers could be

deployed.

NOTE - Examples of considerations for AN while selecting the reference

points are trade-offs in terms of benefits (e.g. spectral efficiency, latency, etc)

as against the computational overheads of training of models or

communication overheads.

AN-arch-adp-req-024
The AN architecture is required to support the AN ability to select the

controllers for integration in the underlay network based on the results

of the experimentations which are in turn based on the reference points

in the underlay network where the controllers could be deployed.

AN-arch-adp-req-025
The AN architecture is required to support the AN ability to integrate

the controllers, selected based upon the experimentation results, at the

reference points in the underlay network where the controllers could be

deployed.

NOTE - This may involve control and data flow modifications

according to the integration methods for controllers in the underlay

network.

AN-arch-adp-req-026
The AN architecture is required to enable AN continuous monitoring of

capabilities at various levels of the underlay networks and trigger update

of controllers based on any changes to the capabilities.

NOTE - Examples of changes to capabilities of underlay networks are

addition, deletion of network functions, updates to software versions.

AN-arch-adp-req-027
The AN architecture is required to support the placement or deployment

of controllers in various parts of the underlay network.

NOTE - Deployment may consider resource availability and other

capabilities of the underlay network along with the requirements of the

controller.

AN-arch-adp-req-028
The AN architecture is required to support a tightly coupled and loosely

coupled integration with underlay networks.

NOTE 1 - The capability and preference of the underlay network to

perform a tightly coupled or loosely coupled AN integration may be

discovered at the time of integration with the underlay network.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 21

NOTE 2 - In tightly coupled integration, the underlay network may

utilize the components provided by AN provider. Whereas in loosely

coupled integration, the underlay network may deploy and use the

underlay network providers’ components for AN.

AN-arch-adp-req-029
The AN architecture is required to enable controllers to use domain

specific mechanisms to manage resource sharing and service

integrations, across domains in the underlay networks.

NOTE - Examples of domain specific mechanisms include dynamic

service agreements and distributed ledger technologies.

AN-arch-adp-req-030
The AN architecture is required to support the discovery by the AN of

the need for new controllers based on monitoring of the underlay

network.

NOTE – The need for new controllers may be discovered based on

monitoring of various parameters or KPIs.

AN-arch-adp-req-031
The AN architecture is required to support, based on the discovery of

the need for new controllers, the selection of new controllers from

controller repositories, as candidates to be deployed in the underlay

network.

NOTE - Controller repositories may be external or internal to the AN

provider.

AN-arch-adp-req-032
The AN architecture is required to support the evaluation of new

candidate controllers to be deployed in the underlay network from the

selected ones from repositories’ candidates.

NOTE – Evaluation may be done based on use case specific metrics.

AN-arch-adp-req-033
The AN architecture is required to support the run-time deployment of

new controllers in the underlay network based on the candidates

evaluated from repositories.

AN-arch-adp-req-034
The AN architecture is recommended to enable the monitoring of

controllers which are already deployed in underlay networks.

AN-arch-adp-req-035
The AN architecture can optionally provide the ability to influence the

services provided by service management frameworks.

NOTE - Examples of AN influence upon services provided by service

management frameworks are passing policies and intents to service

management frameworks. Service management frameworks may use

them to design, deploy new and/or modified services.

AN-arch-adp-req-036
The AN architecture can optionally support capabilities enabling the

correlation of declarative specifications of network services with those

of controllers and the use of that correlation to integrate controllers in

the same or different domains of the network.

NOTE - Examples of correlation of declarative specifications of

controllers with those of network services include mapping of

interfaces, capabilities and requirements. Other examples are identifying

opportunities for deriving specifications, e.g., using substitution

mechanisms in TOSCA [b-OASIS TOSCA-v1.3].

AN-arch-adp-req-037
The AN architecture can optionally enable optimal placement of

controllers by the AN based on the application requirements and

capabilities at various domains of the underlay network.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 22

AN-arch-adp-req-038
The AN architecture can optionally support peer to peer interaction

between controllers without the intervention of a centralized

coordinating function.

NOTE – Example of peer interaction is exchange of metadata for

resource allocation and load balancing.

7.4. Requirements for Knowledge

The following are requirements with respect to knowledge in autonomous networks.

Requirement
Description

AN-arch-knw-req-001
The AN architecture is required to provide capabilities for the

management of knowledge related to autonomous networks.

NOTE – Managing knowledge includes storing, querying, exporting,

importing, and optimizing knowledge.

AN-arch-knw-req-002
The AN architecture is required to enable the update of knowledge

based on the various processes involved in the AN.

AN-arch-knw-req-003
The AN architecture is required to support the utilization of components

like stored controllers and knowledge to deploy and manage controllers

in underlay networks.

NOTE – Examples of components include stored controllers and

knowledge.

AN-arch-knw-req-004
The AN architecture is required to enable the storage and management

of supporting artifacts for the lifecycle management of controllers.

NOTE 1 – Examples of supporting artifacts are knowledge, AI/ML or

other types of models, workflow representations, policies which need to

be applied while managing the lifecycle of controllers, etc.

NOTE 2 – Examples of management of supporting artifacts are storage

of knowledge in knowledge base, creation, modification, deletion, and

storage of AI/ML models in ML model repository [b-ITU-T Y.3176]

and of policies, query and discovery of various artifacts.

AN-arch-knw-req-005
The AN architecture is required to support the production of human and

machine-readable reports of periodic or aperiodic nature.

AN-arch-knw-req-006
The AN architecture is required to support capabilities for importing and

exporting of controller specifications at various stages of their

management.

NOTE - Examples of various stages of management of controller

specifications are before and after exploratory evolution.

AN-arch-knw-req-007
The AN architecture is required to support the integration of third party

provided derivation mechanisms for metrics from collected parameters

and measurements.

NOTE – An example of derived metrics is QoE while an example of

collected measurements is QoS parameters.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 23

AN-arch-knw-req-008
The AN architecture is required to support the capturing of both service

KPI requirements as well as deployment preferences and considerations

in the intent.

AN-arch-knw-req-009
The AN architecture is required to provide capabilities for the AN to

capture domain specificities.

NOTE 1 - Examples of domain specificities are latency criteria, location

information, data privacy requirements, etc.

NOTE 2 - Examples of capturing domain specificities are TOSCA

service definitions. The design of controllers may also be represented

using TOSCA declarative definitions.

AN-arch-knw-req-010
The AN architecture is required to provide the ability for the AN to

capture service specificities.

NOTE - Examples of service specificities include service level

requirements for QoS.

AN-arch-knw-req-011
The AN architecture is required to support the AN capability of using

inputs from external environment and user specific models to design as

well as apply controller outputs to underlay networks.

NOTE - Example of inputs from external environments is mobility

prediction models for users with assistive needs or groups of users.

AN-arch-knw-req-012
The AN architecture is required to support the AN capability of using

user preferences while designing as well as applying controller outputs

to underlay networks.

NOTE - Standard representations of user profiles or preferences or user

models with assistive needs are examples of user preferences.

AN-arch-knw-req-013
The AN architecture is required to provide means for the AN to integrate

data collection mechanisms.

NOTE - Data collection mechanisms may include AR/VR glasses or

other types of sensors. Data collection mechanisms may be provided by

3rd party providers.

AN-arch-knw-req-014
The AN architecture is required to enable the AN discovery of

capabilities available at the various domains of underlay networks.

NOTE - Capabilities of the underlay networks may differ based on their

resource availability, e.g., compute, memory, already deployed

controllers.

AN-arch-knw-req-015
The AN architecture is required to support means for the AN to use

interoperable format for storing controllers.

NOTE - Various components in AN may read and write from the stored

controllers, e.g., an evolution controller may read existing controllers

(even from third parties) and utilize them for composing new

controllers, which are in turn written in the storage.

AN-arch-knw-req-016
The AN architecture is required to support description of use cases in a

declarative format.

AN-arch-knw-req-017
The AN architecture is required to support derivation of domain specific

intents from the use case description.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 24

NOTE – ML intent [ITU-T Y.3172] is an example of domain specific

intent.

AN-arch-knw-req-018
The AN architecture is recommended to enable the analysis and

correlation of domain specific, unstructured data in natural languages

from the underlay networks.

NOTE 1 – Examples of domain specific unstructured data in natural

languages are logs from NFs.

NOTE 2 – Advances in analysis of natural language text may be

exploited from third party models and repositories.

AN-arch-knw-req-019
The AN architecture is recommended to support capabilities for deriving

knowledge from the analysis and correlation of domain specific

unstructured data in natural languages from the underlay networks.

AN-arch-knw-req-020
The AN architecture is recommended to enable the transfer by the AN of

user specific models between different domains in the underlay network.

NOTE - This may help in update of models in other domains, update of

simulators.

AN-arch-knw-req-021
The AN architecture is recommended to provide means for the AN to

use virtual models along with the real-world inputs to analyse and

optimize the underlay network and to provide feedback to operators.

NOTE - Analysis may use AI/ML models. Optimization may involve

configurations in the underlay network. Feedback to operators may be

generated in AR/VR formats.

AN-arch-knw-req-022
The AN architecture can optionally support the ability to integrate in the

AN third-party modules or applications for collection, analysis, or

feedback.

NOTE - For example a software development kit (SDK) may be

exposed to third party developers who may develop new applications to

analyse the AR-collected data.

AN-arch-knw-req-023
The AN architecture can optionally enable the AN creation of use case

descriptions which can then be decomposed to controllers which can be

deployed at various domains of the underlay network, based on the

capabilities at those levels of the underlay network.

NOTE – use case descriptions may be in the form of intents.

AN-arch-knw-req-024
The AN architecture can optionally support the ability for the AN to

discover the characteristics of underlay networks at runtime.

7.5. Requirements for Autonomous Network Orchestration

The following are requirements with respect to orchestration in autonomous networks.

Requirement Description

Rec. ITU-T Y.3061 (12/2023) - prepublished version 25

AN-arch-ano-req-001 The AN architecture is required to support the ability of parsing,

validating and translating abstracted use case descriptions, with high

level objectives of a controller into controller designs.

NOTE 1 – The abstracted use case descriptions may be hand-crafted as

unstructured text or derived from controller specifications.

NOTE 2 – Controller designs may be provided using structured

languages formats (e.g. TOSCA [b-OASIS TOSCA-v1.3]) and may be

structured in a way which facilitates downstream exploration,

experimentation, and adaptation.

NOTE 3– Controller designs may use and enable properties derived

from various domains in the network, e.g., properties allowing to

describe use cases of physical layer, network layer and application layer.

NOTE 4– Examples of use cases are:

(a) Root cause analysis and diagnosis of network elements based on real

time analysis of data - see FG-AN-usecase-006 in [b-ITU-T Y.Supp 71]

(b) Intelligent energy saving solution based on automatic data

acquisition, AI-based energy consumption modelling and inference,

facilities parameters control policies decision, facilities adjustment

actions implementation, energy saving result evaluation and control

policies continuous optimization – see FG-AN-usecase-007 in [b-ITU-T

Y.Supp 71]

(c) Optimal adjustment of antenna parameters with AI enabled multi-

dimensional analysis and prediction – see FG-AN-usecase-008 in [b-

ITU-T Y.Supp 71]

(d) Management of 3rd party vertical applications and related services in

the network – see FG-AN-usecase-010 in [b-ITU-T Y.Supp 71]

AN-arch-ano-req-002 The AN architecture is required to have the ability to manage the

lifecycle of controllers.

NOTE 1 - Examples of management tasks of a controller’s lifecycle

include creating a configuration for the controller (based on the

capabilities of the underlay network), creating an instance of the

controller in the underlay network, monitoring the execution of the

controller in the underlay network and subsequently optimize the

controllers or related parameters.

NOTE 2 – Examples of subsequent optimization are recommendations

on new AI/ML analysis techniques, data collection techniques, evolution

of controllers to move up the intelligence level [b-ITU-T Y.3173].

AN-arch-ano-req-003 The AN architecture is required to enable the management of lifecycle

of controllers based on output of controllers.

NOTE – Examples are management of lifecycle of controllers in

underlay network (such as RAN), by controllers in underlay network

(e.g. CN), creation and optimal positioning of controllers in the RAN by

controllers in a higher domain, as well as evolution, experimentation and

deployment of controllers.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 26

AN-arch-ano-req-004 The AN architecture is required to enable the consumption of services

exposed by service management frameworks used by underlay

networks.

NOTE 1 - Services exposed by service management frameworks include

configuration, lifecycle management and customization.

NOTE 2 - Examples of service management frameworks include ETSI

ZSM framework [b-ETSI GS ZSM 009-1].

AN-arch-ano-req-005 The AN architecture is required to support capabilities enabling the AN

adaptation to the evolution of underlay network services, which may

take place independently to the evolution of AN.

NOTE - The modification of underlay network services may be

managed by an t entity different than the one managing the evolution of

AN.

AN-arch-ano-req-006 The AN architecture is required to utilize the available connectivity

options provided by the underlay networks to deploy and integrate

controllers in different levels of the underlay networks.

AN-arch-ano-req-007 The AN architecture is required to support the monitoring of changes to

underlay network connectivity among controllers deployed in various

domains.

AN-arch-ano-req-008 The AN architecture is required to support the exposure of a single point

of monitoring and managing of the AN functionalities deployed by the

operator.

AN-arch-ano-req-009 The AN architecture is required to support the discovery of changes to

network functions in the underlay networks and to include the changed

functions in the AN while providing AN functionalities like evolution.

NOTE - This enables plug and play of new NFs in the underlay

networks.

AN-arch-ano-req-010 The AN architecture is required to support the provision of inputs to

external systems regarding potential scenarios and requirements.

NOTE - Examples of inputs are reports generated from AN on new use

case scenarios, such as experimentation scenarios.

AN-arch-ano-req-011 The AN architecture is required to support the ability for the AN to

create, store, customize and export controllers which can be deployed in

various types of underlay networks.

AN-arch-ano-req-012 The AN architecture is required to support interfaces between AN and

resource orchestration functions in the underlay network.

NOTE 1 - Examples of resource orchestration mechanisms are not only

network function virtualization (NFV) management and network

orchestrator (MANO) but also domain specific resource managers like

multi-user schedulers in RAN.

NOTE 2 – The AN interfaces may be used to trigger actions or

monitoring.

AN-arch-ano-req-013 The AN architecture can optionally support the ability for the AN to use

third party toolsets for the development and visualization of controllers.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 27

NOTE - Graphical user interfaces to edit workflows are examples of

third-party toolsets.

AN-arch-ano-req-014 The AN architecture can optionally support input of use case design

within AN whereas design and deployment of controllers in underlay

networks may be done by third parties.

8. Architecture Framework Description

8.1 High-level Architecture Framework

This clause describes the high-level architecture framework for autonomous networks. The goal of

this architecture is to support the continuous evolutionary-driven creation, validation, and

application of a set of controllers to a network and its services such that the network and its services

may become autonomous.

As shown in Figure 1, the high-level architecture framework for autonomous networks consists of

the Autonomy Engine (clause 8.3.1), the Dynamic Adaptation subsystem (clause 8.3.2), the

Knowledge Base system (clause 8.3.3), the AN Orchestrator (clause 8.3.4), the Underlay Network

(clause 8.3.5), and the E2E Network Orchestrator (clause 8.3.6).

The following sections describe them in detail, they are briefly introduced here. The Autonomy

Engine embodies the key concepts of exploratory evolution and online experimentation and is

responsible for the creation and validation of controllers. The Dynamic Adaptation subsystem

embodies the key concept of dynamic adaptation and is responsible for equipping the underlay

network with autonomy via controllers. The Knowledge Base system manages the lifecycle and

optimisation of knowledge. The AN Orchestrator is responsible for managing the workflows and

processes in the AN, as well as the steps in the lifecycle of controllers. The Underlay Network is a

telecommunication network with its network functions. The E2E Network Orchestrator is

responsible for managing and orchestrating control entities within the autonomous network,

including the underlay.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 28

Figure 1 – High-Level Architecture Framework for Autonomous Networks

The reference points, as shown in Figure 1, are the followings:

RP-AN-1, RP-AN-2, RP-AN-3 and RP-AN-6: Reference points between Knowledge Base

subsystem and Underlay Network, Dynamic Adaptation subsystem, Autonomy Engine, E2E

Network Orchestrator and AN Orchestrator respectively. As discussed in clause 7.4, these reference

points enable access to knowledge base from other subsystems in the architecture framework.

RP-AN-4: Reference point between Autonomy Engine and Dynamic Adaptation subsystem.

This reference point is used for providing evolutionary exploration and experimentation

functionalities to the Dynamic Adaptation subsystem.

RP-AN-5: Reference point between Dynamic Adaptation subsystem and Underlay Network.

This reference point is used for providing selection and integration of controllers to an underlay, as

the underlay undergoes changes at run-time.

RP-AN-7, RP-AN-8 and RP-AN-11: Reference points between AN Orchestrator and Knowledge

Base, Autonomy Engine and Dynamic Adaptation subsystem respectively. These reference points

enable the AN Orchestrator to manage the workflows and processes in the AN and the lifecycle of

controllers.

RP-AN-9, RP-AN-10, RP-AN-12: Reference points between E2E Network Orchestrator and AN

Orchestrator, Autonomy Engine, and Dynamic Adaptation subsystem respectively. These reference

points are used by the E2E Network Orchestrator to manage and orchestrate control network entities

in the autonomous network framework. These reference points may use existing procedures as

defined in [b-ITU-T Y.3100].

Rec. ITU-T Y.3061 (12/2023) - prepublished version 29

RP-AN-13: Reference point between E2E Network Orchestrator and Underlay Network. This

reference point is used by the E2E Network Orchestrator to manage and orchestrate control network

entities in the Underlay Network. This reference point may use existing procedures as defined in [b-

ITU-T Y.3100].

NOTE 1 – Detailed description of the reference points shown in Figure 1 is for future study.

An example realisation of the architecture framework for Autonomous Networks can be found in

Appendix I (IMT-2020 network underlay).

In addition to the architecture components, there are functionalities external to this architecture

framework, which may enhance the AN architecture. See Appendix III for details.

NOTE 2 – The details of the interaction of these external functionalities with the architecture

framework through the architecture framework reference points are out of scope of this document.

8.2 Description of controller

In this architecture, we introduce the term “controller”. As introduced in clause 6, a controller is a

workflow, open loop or closed loop [ITU-T Y.3115] composed of modules, integrated in a specific

sequence, using interfaces exposed by the modules, which can be developed independently of the

system under control before integration into the system under control, to solve a specific problem or

satisfy a given requirement.

NOTE 1 – Modules may themselves be workflows, open loops, or closed loops. Other examples of

modules include aggregation functions, DNS configuration interfaces, functions gathering

orchestrator statistics, an entire deep neural network (DNN) model, a single layer of a DNN model,

etc.

Exploratory evolution and experimentation are examples of functionalities in the AN which act

upon controllers. Exploratory Evolution hosts evolution controllers which provide the functionality

that creates and modifies a controller in accordance with the system under control and the real-time

changes therein. Experimentation subsystem hosts experimentation controller which provides the

functionality that validates controllers using inputs from a combination of underlay network,

simulators and/or testbeds. In addition, the Dynamic Adaptation subsystem hosts the curation,

selection and operation controllers which provide the functionality of process of continuous

integration of controllers to an underlay as the underlay undergoes changes at run-time.

NOTE 2 - Examples of system under control are managed entities, workflows and/or processes in

an IMT-2020 network.

The architecture described here enables the design, creation, and adaptation of these controllers.

This architecture inputs modules that are amenable to composition and produces controllers which

are in turn modular.

Figure 2 shows the different forms interaction of controllers with the underlay network.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 30

Figure 2 – Controllers and Underlay Network Interaction

The interactions are:

• Controller interacting with hardware components [b-LogicNets].

• Controller interacting with software components.

• Controller interacting with an orchestrator or other software control mechanisms.

NOTE 3 - Other software control mechanisms, such as workflow tools [b-FRINX], may be

considered as orchestrators.

• Controller interacting with other controllers.

NOTE 4 - Building upon this simple representation, hierarchies of controllers may be formed.

8.3 Description of the sub-systems and their components

This clause describes the sub-systems of the high-level architecture framework shown in Figure 1,

and associated components.

8.3.1 Autonomy Engine

Autonomy engine refers to the grouping of the Evolutionary Exploration subsystem and the

Experimentation subsystem described in clauses 8.3.1.1 and 8.3.1.2 respectively. Together, these

architectural components enable the more general trial and error process where new candidate

controllers are generated in the former and validated by the latter. This grouping directly addresses

the need for automatic “design-time procedures” [ITU-T Y.3177].

In addition to controllers, Appendix II describes how the AN architecture can be used to achieve

autonomous operation of itself.

8.3.1.1 Exploratory Evolution Subsystem

Exploratory evolution enables exploration and evolution to adapt controllers in response to changes

in the Underlay Network. Knowledge stored in the Knowledge Base subsystem is used in

autonomous networks for supporting the continuous exploratory evolution. As explained in 8.1,

Reference point RP-AN-3 allows Exploratory Evolution subsystem to interface with the Knowledge

Base subsystem and Reference RP-AN-4 allows Exploratory Evolution subsystem to interface

towards Dynamic Adaptation subsystem. Figure 3 shows an overview of the Exploratory Evolution

subsystem and its relation to the Knowledge Base subsystem as new controllers are generated or

existing controllers are updated (evolved) as part of exploratory evolution.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 31

Figure 3 – Exploratory Evolution Overview

As stated in clause 6, any approach towards an autonomous network requires the ability to adapt its

operation. This adaptation can be motivated by changing operation environments, new

technological innovation, faults, human error, the pursuit of contextual optimality, etc. Additionally,

based on the requirements in clause 7, this architecture requires the ability to alter the logic which is

used to operate autonomous networks (i.e., controllers). Without such functionality, it is not

possible to achieve adaptation which is sufficiently flexible across the spectrum of use cases,

operational environments, technological innovations, and potential human errors.

NOTE 1 - It is important to remember that controllers may themselves possess the ability to adapt

their outputs based on learning or experience – so called cognitive controllers [b-Mwanje 2020].

Even in this case, there is a limit to their ability to adapt to the unknown (e.g., a never before seen

anomaly), to embrace new technologies (e.g. a new transport protocol), or to handle error. In all

cases, human intervention is required.

Controller specifications are high-level, non-executable representations of a controller with the

metadata corresponding to necessary functionality of the controller and a utility function to be

achieved. Controller designs are low-level, non-executable representations of controller containing

modules, their configurations, and their parameter values which are used to instantiate a controller.

Controller designs are derived from controller specifications by the evolution controller.

Collections of controllers may be formed with each controller tasked with the same purpose but

with different compositions.

Hence, the Evolutionary Exploration subsystem is responsible for:

1. The automatic generation of controller designs from composable software module

specifications.

2. The automatic modification of controller designs based on existing controller and module

specifications and/or designs.

3. The automatic generation of controller designs from controller specifications

4. The automatic modification of controller designs based on existing controller specifications.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 32

Exploratory evolution will enable the automated design or modification of controllers and their

hierarchies for the purpose of exploring the range of possible controller logics – and hence how the

controller will adapt to the operational environment.

NOTE 2 – One approach to achieve such automated design for controllers and controller hierarchies

is population-based artificial intelligence (AI) techniques, such as evolutionary computing [b-

evolution].

8.3.1.1.1 Evolution controller

Exploratory evolution is the process that creates and modifies a controller in accordance with the

system under control and the real-time changes therein.

NOTE 1 – An example of a process that creates a controller is the composition of controllers from

modules or other closed loops. This may involve the selection of modules which are used for

composition.

NOTE 2 – An example of a process that modifies an existing controller is the dynamic change in

the controller’s structure by adding new modules, deleting existing modules, replacing existing

modules, or rearranging the structure of a controller’s modules, in accordance with the real time

changes in the system under control.

An evolution controller is the component responsible for managing the application of exploratory

evolution on controllers. Exploratory evolution is the ability to modify the structure and

configuration of a controller. This assumes that the controllers are composed of modular and

configurable elements or “building blocks”. Thus, a controller’s structure may be modified by:

• The configuration of each software module’s parameters

• The selection of which modules are present within a controller

• The relationships between the modules within the controller

The process of exploratory evolution is agnostic to whether the current operational environment is

known ahead of time or is completely new and unseen. The process includes generating options for

exploratory evolution and based on the characteristics of the controller and the knowledge base,

applying such evolutions on various types of controllers. As part of this, controller characteristics

may be discovered, new controllers may be composed from modules or other controllers to provide

new capabilities in the network. Declarative representation of use cases, provided by AN

Orchestrator, is used as input by the evolution controller. Controller designs may be updated by the

evolution controller based on the exploratory evolution.

NOTE 3 - Examples of processes to drive the modification of a controller are:

1) biologically inspired artificial evolution, as found in evolutionary computing or genetic

programming [b-large-evolution, b-evolution],

2) Bayesian optimisation [b-bayesian-radio],

3) game theoretic approaches [b-game-theory].

Specific algorithms, including those provided by third party solution providers, used for exploratory

evolution are out of scope of this Recommendation.

NOTE 4 - Examples of application of exploratory evolution in various application contexts are

given below:

- 1) A “RAN channel scheduling controller” is an example of a controller used to allocate

radio resources to users in a multi-user environment. Exploratory evolution is applied to a

RAN channel scheduling controller in response to the change of radio channel feedback

from the UE. This may include selecting the most appropriate algorithm from a set of

alternatives.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 33

- 2) An “anomaly detection controller” is an example of a controller used to detect abnormal

states in the operation of a network service, such as security attacks or peaks in resource

usage for network function. In this context, the new approaches of data fusion algorithms [b-

data-fusion] may be applied. Exploratory evolution is applied to “anomaly detection

controller” by optionally using and configuring newly provided data fusion algorithms as the

input of an “anomaly detection controller”,

- 3) A “time-to-live controller” is an example of a controller used to configure the time

duration for which a certain content is cached in a CDN server. In a time-to-live controller

in a caching system at the edge, optimisation of the timeout parameter(s) is an example of

application of exploratory evolution.

- 4) A “scaling controller” is an example of a controller used to increase or decrease the

resource allocation for a network function. In this context, exploratory evolution may be

applied by controlling the configuration of the scaling method of deployed controllers in a

specific network domain.

NOTE 5 – Optimisation of exploratory evolution, e.g., reducing the time taken for exploratory

evolution in previously seen operational environments, is possible by using accumulated

knowledge. However, such optimisation scenarios are out of scope of this Recommendation.

8.3.1.2 Experimentation Subsystem

Experimentation subsystem is concerned with the validation of controllers. It will design,

orchestrate, and execute experimental scenarios. These are supported by Knowledge Base

subsystem, AN Orchestrator and E2E Network Orchestrator.

Figure 4 shows an overview of the Experimentation subsystem and its relationship with Knowledge

Base subsystem, AN Orchestrator and E2E Network Orchestrator through various reference points

described in clause 8.1.

Reference point RP-AN-3 allows Experimentation subsystem to interface with the Knowledge Base

subsystem as experimentations are designed and updated as part of experimentation process.

Reference point RP-AN-4 allows Experimentation subsystem to interface with Dynamic Adaptation

subsystem. Reference point RP-AN-8 and RP-AN-10 allow the Experimentation subsystem to

orchestrate the experimentations.

Figure 4 – Experimentation Subsystem

Rec. ITU-T Y.3061 (12/2023) - prepublished version 34

Controllers must be validated before being integrated to the underlay to ensure that they are free of

errors and meet both functional and non-functional requirements.

Validation is a spectrum of activities that may encompass one or more tasks, including static

testing, simulation, testbed deployment and canary testing. In addition, validation can also be used

to assess non-functional properties, such as trust, providing confidence in the “handover of work,

duties, or decisions” to the architecture.

To compliment these validation activities, the experimentation controller also requires additional

input from the Underlay Network and its configuration. As shown in Figure 4, this information

should be stored and made available from the knowledge base. Representative examples of such

data are discussed in clause 8.3.3.

8.3.1.2.1 Experimentation Controller

Experimentation is the process that validates controllers using inputs from a combination of

underlay network, simulators and/or testbeds. The process of experimentation ensures that the

controller under experimentation satisfies the use case requirements and is compatible with

deployment in the intended underlay.

An experimentation controller is a component which generates potential scenarios of

experimentations based on controller designs and representations of the use cases. Experimentation

controller uses additional information, as provided by the knowledge base and AN Orchestrator, in

the process of generating scenarios of experimentation.

NOTE 1 - Methods for generating scenarios for experimentation are assisted by additional

information including knowledge captured in the knowledge base and/or machine learning.

experimentation controller may exploit the structured representation (e.g., TOSCA YAML [b-

OASIS TOSCA-v1.3]) of the controllers to derive scenarios for experimentation. Experimentation

scenarios can also be provided by 3rd party providers to be used by the experimentation controller.

In addition to generating scenarios for experimentation, experimentation controller executes the

scenarios in the AN Sandbox, collates and validates the results of the experimentation. Reports may

be generated by experimentation controller which captures information from the steps of generating

scenarios, execution and validation of controllers. These reports may be shared with humans or used

for analysis by algorithmic methods. Experimentation scenarios may be optimized as result of

analysis of the experiments.

NOTE 2 - Selection of new validation or test scenarios are examples of optimizations applied to

experimentation scenarios.

NOTE 3 - In the process of experimentation, experimentation controller can use different types of

components such as simulators, data generators hosted in the AN Sandbox, including those

provided by 3rd parties. Experimentation may be triggered by various AN workflows which

necessitate validation of controllers, e.g. software update of controllers. The process of

experimentation may be configurable, e.g., it may be triggered periodically, asynchronously.

NOTE 4 – Examples of experimentation in various application contexts are given below:

• The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or model

checking to ensure that provided management and orchestration solutions are well-formed

against pre-defined rules.

• The use of simulators or digital twins in offline validation of controllers. These simulators or

digital twins can support the same interfaces as underlays.

• The use of digital twins [b-Digital-twin] in online validation of controllers before

deployment.

NOTE 5 – Online validation involves use of timescales comparable to real underlays, e.g.,

validation of controllers (xApps) [b-ORAN] using digital twins.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 35

• Combinations of the above to achieve broader coverage of validation, from the offline

validation to online validations during the operation of the underlay.

8.3.1.2.2 AN Sandbox

AN Sandbox is an environment in which controllers can be deployed, experimentally validated with

the help of (domain specific) models of underlays, and their effects upon an underlay evaluated,

without affecting the underlay.

NOTE 1 - AN Sandbox generates reports regarding the experimental validation of controllers.

These reports are collated by the experimentation controller and the knowledge base is updated.

NOTE 2 - The domain specific models of underlays are generated using inputs from underlays.

These inputs are used in configuring simulators in AN Sandbox. For example, the packets per

second to be used to simulate a real-world scenario. In addition, AN Sandbox simulates scenarios

which are rarely or never seen in underlays. For example, a burst of traffic which rarely occurs in

real network.

AN Sandbox hosts different types of components such as simulators, data generators, including

those provided by 3rd parties. Experimentation controller may trigger experiments of various AN

workflows which necessitate validation of controllers, e.g. software update of controllers.

8.3.2 Dynamic Adaptation Subsystem

Dynamic adaptation equips the Underlay Network with autonomy and the ability to handle new and

hitherto unseen changes in network scenarios. Knowledge stored in the Knowledge Base subsystem

is used in autonomous networks for supporting the continuous dynamic adaptation. AN

Orchestrator and E2E Network Orchestrator support the orchestration needed for dynamic

adaptation towards Underlay Network.

As explained in clause 8.1, reference point RP-AN-2 allows Dynamic Adaptation subsystem to

interface with Knowledge Base subsystem. Reference points RP-AN-11 and RP-AN-12 allow

Dynamic Adaptation subsystem to interface with AN Orchestrator and E2E Network Orchestrator

respectively. Reference point RP-AN-4 allows Dynamic Adaptation subsystem to interface with

Experimentation subsystem and Exploratory Evolution subsystem. RP-AN-5 allows Dynamic

Adaptation subsystem to interface with Underlay Network. RP-AN-13 allows E2E Network

Orchestrator to interface with Underlay Network.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 36

Figure 5 – Dynamic Adaptation Subsystem

The Dynamic Adaptation subsystem is responsible for curating a set of controllers which may be

considered as “fit for purpose” or “safe enough to try” and selecting a subset of controllers for

integration with the underlay.

NOTE 1 - Here, “fit for purpose” is evaluated based on the fitness function or utility score obtained

from the Experimentation subsystem (clause 8.3.1.2).

This set of controllers is drawn from the controllers which were validated by the Experimentation

subsystem. Additionally, this subsystem is responsible for which of these curated controllers should

be selected for actual deployment in the management of the managed entity. Precisely when, under

what conditions, or with what frequency curation or selection happens are configurable properties

of the curation and selection processes themselves. This is necessary as each managed entity, as

well as the operational and business environments in which they operate, vary from use case to use

case. To accommodate this, the curation process is guided by requirements. Examples of such

requirements may include:

• The size of the curated controller lists

• The average utility of the curated controller lists

• The diversity of the controllers within the curated controller lists

• The utility threshold required to be considered to enter or remain within the curated

controller lists.

NOTE 2 - It is important to remember that metrics such as KPI, QoS, QoE, etc. are expected to be

represented within a controller’s utility function.

As shown in Figure 5, the controllers are stored within the network information base. As the

evolvable controllers undergo constant evolution, it is the responsibility of the dynamic adaptation

to bring stability to the operation of the managed entity by creating a level of separation between

evolvable controllers managed by the autonomy engine and the operation controller integrated with

the managed entity.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 37

As also shown in Figure 5, the curation and selection processes are realised as controllers. As such,

their internal structure may be composed (and subsequently evolved) from different modules as

required. Controllers for curation and selection are discussed in clause 8.3.2.1.

NOTE 3 - For example, a selection controller may be composed of modules which send the trend of

fluctuation of user populations, network traffic, or resource demands. As discussed in 8.2 such

controllers may be implemented using ML pipelines.

Selection and integration of controllers to a managed entity require a stable set of functioning

controllers which can respond correctly in sub-second timescales, depending on the use case in

question.

Accordingly, the autonomy engine and Dynamic Adaptation subsystem corresponds to the design-

time and run-time concepts, respectively, as expressed in [ITU-T Y.3177].

8.3.2.1 Adaptation Controller

Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the

underlay undergoes changes at run-time. Integration of controllers may involve multiple domains of

the underlay.

NOTE 1 – Examples of underlays are edge networks, core networks, management plane, CI/CD

pipelines, etc. Integration of controllers into the underlay involves usage of underlay specific APIs,

customization of interfaces, configurations and interface elements used for integration. Examples of

changes undergone by the underlay are updates in software or hardware components, failures in

software or hardware components, configuration changes, or other external dependencies (including

those provided by 3rd parties). Continuous integration includes updating the controllers in the

underlay to handle the changes undergone by the underlay.

Examples can include:

• Scaling via the routing of traffic to different processing nodes in either the use of control

plane via DNS updates or SDN configurations, refer FG-AN-usecase-040 in [b-ITU-T

Y.Supp 71]

• Scaling via the number, replication, and distribution of bare metal, virtual machine, or

container resources attached to network services, refer FG-AN-usecase-018 in [b-ITU-T

Y.Supp 71]

• Scaling via the priority or relative bandwidth allocation of radio spectrum to different user

or use case categories in RAN, refer FG-AN-usecase-032 in [b-ITU-T Y.Supp 71]

NOTE 2 – Specific configurations for integration of controllers for specific use cases may be out of

scope of this Recommendation.

Adaptation controller is the component in AN responsible for selecting candidate controllers from a

set of generated controller configurations which are ready for integration and executes the

integration to the underlay. An adaptation controller will monitor deployed controllers and the

underlay, deciding opportunities for new controller integrations to the underlay. In monitoring a

deployed controller, an adaptation controller will discover underlay specific parameters (including

those provided by 3rd parties) for optimisation, data points of collection and KPIs for tracking, and

may update such knowledge to the knowledge base.

Adaptation controller has two parts: Curation controller (responsible for selection and maintenance

of the controllers within the curated controller lists from the evolvable controllers) and Selection

Controller (responsible for the selection of a services’ operational controller from the curated

controller lists).

Generation of configurations for adaptation may take the controller design as input along with the

description or metadata related to the underlays. In the process of adaptation, the adaptation

Rec. ITU-T Y.3061 (12/2023) - prepublished version 38

controller may utilize the services provided by service management frameworks such as ONAP [b-

ONAP].

Reports may be generated by adaptation controller which captures information from the process of

adaptation. These reports may be shared with humans or used for analysis by algorithmic methods.

Adaptation process may be optimized as result of analysis of the reports.

NOTE 3 - Examples of adaptation in various application contexts are given below:

• The need to use different traffic shaping algorithms for various geographical contexts, such

as urban vs rural

• Business priorities may change over a period of time, e.g., prioritization of performance

KPIs over energy efficiency or prioritisation of internal applications over third-party

applications. These changes in business priorities may necessitate the use of different

controllers for scheduling virtual machines or containers.

• There could be a need to deploy new technology in order to improve or optimise operation,

including adding new capabilities that previously did not exist, e.g. new AI/ML algorithms

or new data fusion approaches to blend the increasing number of data sources.

• There could be a need to deploy new technology in order to address errors or faults, e.g. data

acquisition or actuation software for new hardware devices or adaptation software to

account for incompatibilities in deployed technology.

Selection of candidate controllers from a set of generated controller configurations is followed by

the processes used to drive adaptation in the underlay. Examples of processes used to drive

adaptation are:

• Simple threshold-based replacement of one deployed controller with another, where

threshold is defined against a controller’s performance

• PID controller [b-PID]-based replacement of one deployed controller with another

• The use of AI/ML model in the prediction of future operation and response to pre-emptively

exchange a deployed controller [b-ITU-T Y.Supp 71]

• Combinations of the above in concert with knowledge stored within the knowledge base

8.3.2.2 Operation Controller

An operation controller is a controller responsible for the operation of a managed entity. Operation

may include analysing the data (e.g., throughput or latency) related to the managed entity and

applying actions (e.g., scale in/out or migration) to the managed entity. An operation controller is

selected and applied to the managed entity by selection controller. After application of operation

controller to a managed entity, the controller is continuously monitored by the selection controller

for the purpose of providing the most effective operation of the managed entity.

While evolution controllers, experimentation controllers, and adaptation controllers are responsible

for activities within the high-level architecture framework, operation controllers are responsible for

activities outside of the high-level architecture framework.

8.3.2.3 Service Endpoints

As discussed in [b-ITU-T Y.3104], the network functions interact with each other to provide the IMT-

2020 network services specified in [b-ITU-T Y.3102]. The network functions within the core network

(CN) control plane (CP) interact with each other using service interfaces.

The service interfaces used for interaction between the Dynamic Adaptation subsystem and the

Underlay Network are referred to as service endpoints.

8.3.3 Knowledge Base subsystem

Autonomous networks require the collection, description, usage, storage, and analysis of data. The

analysis of data and information, resulting in an understanding of what the data and information

mean, is often referred to as knowledge.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 39

Data, information, and knowledge are required for the controllers to operate the managed entity and

in its goal of supporting the continuous exploratory evolution, realtime online experimental

validation, and dynamic adaptation.

Knowledge base is a subsystem which manages storage, querying, export, import and optimization

and update knowledge.

NOTE 1 - Knowledge includes metadata which is derived from the capabilities and status of AN

components. This knowledge is stored and exchanged as part of interactions of AN components

with knowledge base. Knowledge can be derived from different sources including structured or

unstructured data from various actors involved in a use case and/or various experiments in AN

Sandbox.

Managing knowledge includes storing, querying, export, import and optimize the knowledge. AN

workflows, including exchange of knowledge between AN components, may in turn result in

update of knowledge base.

NOTE 2 – Uses of knowledge stored in knowledge base by other components include to facilitate

the deployment and management of controllers in underlays, and selection and optimization of

experimentation strategies in the experimentation stage.

Examples of knowledge stored in a KB are:

1) Relevant descriptions of modules and controller meta data taxonomies and ontologies.

2) Configurations: an underlay network configuration represents the various arrangement,

relationships, contents, and settings of the elements of an underlay network as may be required by

the online realtime experimentation subsystem to build and configure an experimental underlay

network, or other architectural components. E.g., network topology, host configuration and location

related parameters, types of services and application requirements. The configurations may be

represented using OASIS TOSCA YAML [b-OASIS TOSCA-v1.3]

3) Metrics: metrics are the data related to the status and performance of the different components of

the architecture, controllers, operating environment, underlay network, and managed entities. E.g.,

resource usage such as CPU usage, workload such as packet rate, performance metrics such as QoS.

8.3.4 AN Orchestrator

AN Orchestrator is the component responsible for managing workflows and processes in the AN

and steps in the lifecycle of controllers. To manage the workflows and processes in AN, AN

Orchestrator coordinates with various other functions in the AN as well as outside the AN.

NOTE 1 - Examples of workflows and processes in the AN are interactions with E2E Network

Orchestrator, knowledge base and AN component repositories. Examples of controller instances

are:

• A set of Java objects to be executed on the JVM

• A workflow of tasks as represented in the FRINX machine [b-FRINX]

• A CL in the ZSM framework [b-ETSI GS ZSM 009-1]

• A controller in the ONAP framework [b-Acumos-DCAE]

• An ML pipeline [ITU-T Y.3172]

NOTE 2 - Steps in the lifecycle of controllers are creation or instantiation of controllers from

controller designs, storage, validation, update, deletion, discovery, configuration, deployment,

monitoring of controllers.

NOTE 3 - Some steps in other functions applied to controllers are outside the scope of lifecycle of

controllers, e.g. optimization of controllers may be achieved with the help of functions external to

the AN.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 40

Being part of the management plane, AN Orchestrator provides interface to human operators in the

form of reports regarding the functioning of the AN and human interfaces for configuring the AN,

where applicable.

8.3.5 Underlay Network

An Underlay Network is a telecommunication network with its network functions. An Underlay

Network may provide interfaces which facilitate application of controllers.

The Underlay Network may consist of hardware and software components, in addition to

management components such as orchestrators.

NOTE – An IMT-2020 network is an example of an Underlay Network.

8.3.6 E2E Network Orchestrator

As defined in [b-ITU-T Y.3100] in the context of IMT-2020, orchestration is the set of processes

aiming at the automated arrangement, coordination, instantiation and use of network functions and

resources for both physical and virtual infrastructures by usage of optimization criteria.

Based on the orchestration, E2E Network Orchestrator is a collection of functions, interfacing with

the subsystems in the autonomous network architecture framework, to manage and orchestrate

control network entities in the autonomous network including the underlay network.

9. Sequence diagrams

This clause gives the sequence diagrams showing the interactions between architecture framework

components and subsystems. Specific reference points over which the messages are exchanged are

not shown here, but all the reference points are shown in Figure 1.

9.1 Exploratory Evolution of Controllers

Exploratory Evolution of Controllers involves creation and modification of controllers in

accordance with the Underlay Network and the real-time changes therein. Below is an example

scenario where controllers are created. In this example, AN operator provides a new use case

specification from which new controller specifications are derived. There are additional example

Rec. ITU-T Y.3061 (12/2023) - prepublished version 41

scenarios where the Evolution controller reuses an existing controller specification and applies the

Exploratory evolution process.

Figure 6 – Creation of Controllers

The steps involved in the scenario described in Figure 6 are:

1. AN operator provides a use case specification to the AN Orchestrator. The use case

specification includes the actors, their relationships and utility functions corresponding to

the use case.

2. AN orchestrator derives an evolution specification from the use case specification. The

evolution specification has a Controller specification with the metadata corresponding to

necessary functionality of the controller and a utility function to be achieved (after the

exploratory evolution process).

3. The evolution controller queries the Knowledge Base for modules corresponding to the

controller specification.

4. The Knowledge Base replies to the evolution controller with the available modules

corresponding to the request.

5. This is an optional step where the evolution controller requests knowledge from the

Knowledge Base relevant to the use case specification or the exploratory evolution process.

6. Corresponding to the optional step 5, the Knowledge Base responds with requested

knowledge

7. The evolution controller applies the exploratory evolution process to create new

controller(s). This includes composition of controllers from modules or other closed loops as

described in clause 8.2

8. The evolution controller updates the Knowledge Base. This includes storing the generated

controllers to the Knowledge Base.

NOTE - Discussion of the logic used to drive the exploratory evolution process is beyond the scope

of this Recommendation. Examples of such processes can be found in clause 8.3.1.1.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 42

9.2 Experimentation for Controllers

Experimentation for Controllers involves validation of controllers using inputs from a combination

of underlay network, simulators and/or testbeds. Below is an example scenario where evolvable

controllers are validated. In this example, a new experiment specification, which has controller

specifications to be validated, is provided by AN Orchestrator. Experimentation controller derives

scenarios for experimentation based on the experiment specification. Based on these scenarios,

Experimentation controller interacts with the Knowledge Base to gather additional supporting

specifications (experiments and/or controllers) and relevant knowledge to design an experiment to

validate the controllers included in the experiment specification.

NOTE 1 - There are additional example scenarios where the Experimentation controller reuses an

existing experiment specification (stored in the Knowledge Base) and designs the experiments to

validate the controller included in the experiment specification provided by the AN Orchestrator.

Figure 7 – Validation of Controllers

Pre-requisites:

Experiment specifications and evolvable controllers are populated in the Knowledge Base. This

may be done based on creation of controllers in Fig 6 or based on offline provisioning by AN

operator. In addition, the AN Sandbox is populated with components which are ready for

instantiation and execution to validate the controllers.

The steps involved in the scenario described in Figure 7 are:

Rec. ITU-T Y.3061 (12/2023) - prepublished version 43

1. AN Orchestrator provides experiment specification which has the controller specification for

the controller to be validated.

2. Experimentation controller requests the current list of experiments from the Knowledge

Base.

3. The Knowledge Base replies with the requested data, if any

4. Experimentation controller requests the current list of controllers from the Knowledge Base

5. The Knowledge Base replies with the requested data, if any

6. Experimentation controller requests additional knowledge from the Knowledge Base,

needed to support the experiment design.

NOTE 2 - Examples of additional knowledge may include operational data from the underlay, such

as user traffic behaviour, user density in a geographical area, previous security attacks, known bad

configurations of base station tilt angles, or mean time between failures for certain hardware

models.

7. The knowledge base replies with the requested data, if any

8. The experimentation controller designs potential experimentation scenarios

9. For each experimentation scenarios, the experimentation controller requests the AN sandbox

to perform the validation

10. The AN sandbox reports the results to the experimentation controller

11. The experimentation controller performs any necessary analysis of the results, and notifies

the AN Orchestrator.

12. AN Orchestrator triggers the experimentation controller to update the knowledge base.

13. The experimentation controller updates the Knowledge Base. This includes storing the

experiment results for the validated controllers to the knowledge base.

NOTE 3 - Discussion of the logic used to drive the experiment design is beyond the scope of this

Recommendation. Examples of such processes can be found in clause 8.3.1.2.

9.3 Dynamic adaptation of Controllers

Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the

underlay undergoes changes at run-time. Below is an example scenario where validated controllers

are curated, selected and deployed to the underlay.

In this example, the AN Orchestrator provides the curation controller with an adaptation

specification (which contains controller specifications), to drive the curation process. Curation

controller queries the Knowledge Base for validated controllers and relevant knowledge. Then the

Rec. ITU-T Y.3061 (12/2023) - prepublished version 44

AN Orchestrator provides the selection controller with an adaptation specification (which contains

controller specifications) to drive the selection process.

NOTE 1 – There are additional example scenarios where the curation controller reuses existing

controller specifications rather than deriving them from the Adaptation specification. Similarly,

there are additional example scenarios where the selection controller reuses existing controller

specifications rather than deriving them from the Adaptation specification.

Figure 8 – Dynamic Adaptation of Controllers

The steps involved in the scenario described in Figure 8 are:

Rec. ITU-T Y.3061 (12/2023) - prepublished version 45

1. The AN orchestrator provides the curation controller with an adaptation specification

(which contains controller specifications), to drive the curation process.

2. The curation controller derives the controller specifications from the adaptation

specification and requests validated controllers from the Knowledge Base

3. The Knowledge Base replies with the requested data, if any

4. The curation controller requests the list of curated controllers for the use case from the

Knowledge Base

5. The Knowledge Base replies with the requested data, if any

6. The curation controller requests additional knowledge from the Knowledge Base needed to

support the curation process

NOTE 2 – Examples of additional knowledge may include controller utility scores, current

traffic load, computational resource consumption, common modules used in the composition

of controllers, or semantic relationships to currently deployed controllers for other use cases.

7. The Knowledge Base replies with the requested data, if any

8. The curation controller performs the curation process which decides the validated

controllers that will be added to the curated list, if any, and which controllers in the curated

list should be removed, if any.

NOTE 3 - Discussion of the logic used to drive the curation process is beyond the scope of

this Recommendation. Examples of such processes can be found in clause 8.3.2.1.

9. The curation controller notifies the AN orchestrator that it has completed the curation

process

10. The AN orchestrator requests the curation controller to update the Knowledge Base with the

curated list of controllers

11. The curation controller updates the Knowledge Base with the list of curated controllers for

the use case

12. The AN orchestrator provides the adaptation specification to the selection controller

13. The selection controller derives the controller specifications from the adaptation

specifications and requests the list of curated controllers from the Knowledge Base

14. The Knowledge Base replies with the list of requested data, if any

15. The curation controller requests additional knowledge from the Knowledge Base needed to

support the curation process.

NOTE 4 – Examples of addition knowledge may include controller utility scores, current

traffic load, computational resource consumption, common modules used in the composition

of controllers, or semantic relationships to currently deployed controllers for other use cases.

16. The Knowledge Base replies with the requested data, if any

17. The selection controller performs the selection process which decides the curated controller

that should be deployed to the underlay. The deployed controllers are known as Operational

Controllers for the specified use case, if any.

NOTE 5 - Discussion of the logic used to drive the selection process is beyond the scope of

this Recommendation. Examples of such processes can be found in clause 8.3.2.1.

18. The selection controller notifies the AN Orchestrator that it has completed the selection

process

19. The AN Orchestrator request the selection controller to update the Knowledge Base with

the controller to be deployed as the Operational Controller

20. The selection controller updates the Knowledge Base

21. The AN Orchestrator performs the necessary lifecycle actions to deploy the Operational

Controller for the use case.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 46

10. Security Considerations

This Recommendation describes the Autonomous Networks architectural framework which is

expected to be applied in future networks including IMT-2020: therefore, general network security

requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-T

Y.3101].

Sensitive information should be protected as a high priority in order to avoid leaking and

unauthorized access.

Additional specific security considerations concern autonomous networks security evaluation (e.g.,

analyzing the characteristics of autonomous networks to evaluate risk of evasion attack). Moreover,

to ensure robust autonomous networks, the reliability of the exploratory evolution, real-time online

experimentation and dynamic adaptation and the generated controllers needs to be assessed before

applying the controllers to the network.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 47

Appendix I

An example realisation of the architecture framework for Autonomous Networks with

technology specific underlays

(This appendix does not form an integral part of this Recommendation)

Figure I.1 gives an example of the Architecture Framework for Autonomous Networks (AN

architecture framework) with an IMT-2020 network [ITU-T Y.3111] [b-ITU-T Y.3104] underlay.

NOTE – A simplified version of Figure 1 is shown in Figure I.1, however, all functionalities

described in clause 8 are applicable.

Figure I.1 – Example of a realisation of the AN architecture framework with an IMT-2020

network underlay

In this example realisation, operation controllers (OC) are instantiated in the IMT-2020 underlay

network. As described in clause 8.3.2.2, OCs are responsible for the operation of a managed entity,

including the analysis of data from the managed entity. Additionally, OCs are continuously

monitored by the Dynamic Adaptation subsystem to ensure the most effective operation of the

managed entity.

OCs are integrated with various IMT-2020 network functions and/or application functions. The AN

architecture framework acts as an overlay providing the subsystems such as evolutionary

exploration (clause 8.3.1.1), online experimentation (clause 8.3.1.2), dynamic adaptation (clause

8.3.2) and Knowledge Base subsystem (clause 8.3.3).

I.1. Examples of deployment locations of controllers

As shown in Figure I.1, various OCs may be deployed in various parts of the IMT-2020 underlay

network. Examples are the following:

• OC1: This controller is deployed in the access network and uses inputs from the access

network to make determinations about capacity coverage optimization and then applies them

to the management functions.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 48

• OC2: This controller is deployed in the CN (UPF) and uses inputs from the CN to make

determinations about packet forwarding and then applies them to the management functions.

• OC3: This controller is deployed in the CN (AF) and uses inputs from the CN to make

determinations about AR/VR and then reports findings to a vertical application;

• OCn: This controller is deployed in the CN (other NFs) and uses inputs from the CN to

make determinations about traffic load balancing and then applies them to the management

functions.

For all examples, the controller deployment locations may be specified in the controller

specification.

The Dynamic Adaptation subsystem interfaces with the AN Orchestrator to deploy the OCs to the

underlay via the E2E Orchestrator. This can be realised via reuse of reference points defined in

[ITU Y.3111].

NOTE 1 – The Dynamic Adaptation subsystem applies the criteria for dynamic adaptation of an OC

(e.g., instantiation or replacement) as discussed in clause 8.3.2.

NOTE 2 – While the deployment of an operational controller on a UE [b-ITU-T Y.3104] may be

technically possible, the associated operational challenges, such as data privacy or security

concerns, are out with the scope of this Recommendation. Examples of such an operation controller

may include one tasked with monitoring the state of a service in the UE as input to end to end

decision making (e.g., QoE measurements for media streaming services).

I.2. Example realisation of Exploratory Evolution

An example of a process to apply exploratory evolution to OCs deployed in various parts of the

IMT-2020 underlay network is the following:

as shown in steps 5 to 10 of Figure 6 (clause 9.1.1), based on data stored in the knowledge base

collected from the underlay network, deployed controllers or experimentation, the Evolution

Controller (clause 8.3.1.1) will generate new controller designs for OC1, OC2, OC3, or OCn. These

controller designs are then stored in the knowledge base.

I.3. Example realisation of Online Experimentation

An example of a process to apply online experimentation to OCs deployed in various parts of the

IMT-2020 underlay network is the following:

as shown in steps 6 to 9 of Figure 7 (clause 9.1.2), based on data stored in the knowledge base

regarding the status and configuration of the access network in the underlay (steps 6 & 7 of Figure

8), the Experimentation Controller (clause 8.3.1.2) will generate possible experimental scenarios for

OC1 (step 8 of Figure 7).

I.4. Example realisation of Dynamic Adaptation

An example of a process to apply dynamic adaptation to OCs deployed in various parts of the IMT-

2020 underlay network is the following:

as shown in steps 15 to 21 of Figure 8 (clause 9.1.3), based on data stored in the knowledge base

regarding the status and configuration of the core network in the underlay, the status and

configuration of currently deployed OC2, and information regarding other relevant curated

controllers (steps 15 & 16 of Figure 8), the Adaptation Controller (clause 8.3.2.1) will decide which

curated controller to be deployed in the underlay (step 17 of Figure 8) as the new revision of OC2

(step 21 of Figure 8).

Rec. ITU-T Y.3061 (12/2023) - prepublished version 49

Appendix II

 Self-reflective use of the AN architecture

(This appendix does not form an integral part of this Recommendation)

The AN architecture framework shown in Figure 1 is used for creating/adapting controllers,

validating controllers, and applying controllers to a managed entity. Despite having different roles,

from a compositional perspective, the exploratory evolution, experimentation and dynamic

adaptation can be applied to these controllers.

The architecture is self-reflective in its operation i.e., the architecture has the ability to modify its

own operation to more effectively adapt to the current operational situation without the involvement

of the human using the same processes as managed entities, as shown in Fig II.1. Thus, the

architecture itself becomes a collection of managed entities.

Figure II.1 – Self-Reflective use of the AN architecture framework

NOTE 1 - Even though Fig II.1 shows only a general application of the AN architecture framework

to itself, specific instances are possible where an operational controller, an evolution controller, an

experimentation controller, a selection controller, and/or a curation controller are the managed

entity.

NOTE 2 - Fig II.1 refers to AN underlay. This concept refers to an instance of AN architecture

framework (or a subset of it) used, in turn, as an underlay of another instance of AN architecture

framework.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 50

Rec. ITU-T Y.3061 (12/2023) - prepublished version 51

Appendix III

External functionalities

(This appendix does not form an integral part of this Recommendation)

In addition to the architecture components, there are functionalities external to this architecture

framework, which may enhance the AN architecture. These external functionalities are provided by

existing implementations.

Examples may include:

• AN Controller repositories [b-dagsthul]: These are repositories which contain controllers and

modules. AN components (e.g. evolution controller) may access this repository to implement

extended functionalities, e.g. composing new controllers.

• External knowledge repositories: In addition to knowledge bases implemented within the AN

architecture, there are external knowledge repositories used by AN architecture to access such

knowledge.

• Domain orchestrators: These may be implemented by third parties and may provide specific

functions associated with specific technologies such [b-ETSI GS ZSM 009-1, b-FRINX, b-

ONAP].

• Development pipelines (CI/CD pipelines): They provide continuous development environment

for components, modules and controllers.

• Model repositories [b-ITU-T Y.3176]: They store the specifications of models used in the AN.

NOTE - Examples of types of models which are stored in the model repositories include:

• Models used by a controller: these are models either placed within a controller or is

accessed by the controller, via an API exposed by a third party.

• Models used by an AN component: these are models either placed within a AN

component such as AN Orchestrator, or is accessed by the component, via an API

exposed by a third party.

Rec. ITU-T Y.3061 (12/2023) - prepublished version 52

Bibliography

[b-ITU-T Y.3100] ITU-T Recommendation Y.3100 (2020), “Cloud computing -

Requirements for cloud service development and operation

management”

[b-ITU-T Y.3102] ITU-T Recommendation Y.3102 (2018), “Framework of the IMT-

2020 network”

[b-ITU-T Y.3104] ITU-T Recommendation Y.3104 (2020), “Architecture of the IMT-

2020 network”

[b-ITU-T Y.3173] ITU-T Recommendation Y.3173 (2020), “Framework for evaluating

intelligence levels of future networks including IMT-2020”

[b-ITU-T Y.3176] ITU-T Recommendation Y.3176 (2020), “Machine learning

marketplace integration in future networks including IMT-2020”

[b-ITU-T Y.3525] ITU-T Recommendation Y.3525 (2020), “Cloud computing –

Requirements for cloud service development and operation

management”

[b-ITU-JFET] ITU Journal on Future and Evolving Technologies, Blessed et al,

(2022), “Network resource allocation for emergency management

based on closed-loop analysis"

[b-ITU-T Y.Supp 55] ITU-T Supplement 55 to ITU-T Y.3170-series Recommendations

(2019), Machine learning in future networks including IMT-2020:

Use cases

[b-ITU-T Y.Supp 71] ITU-T Supplement 71 to ITU-T Y-3000 series Recommendations

(2022), Use cases for Autonomous Networks

[b-Acumos-DCAE] Acumos DCAE Integration,

https://wiki.onap.org/display/DW/Acumos+DCAE+Integration

[b-AUTOML] Google’s AutoML tool, https://cloud.google.com/automl

[b-AUTOML-ZERO] Real, E., Liang, C., So, D. and Le, Q., 2020, November. Automl-zero:

Evolving machine learning algorithms from scratch. In International

Conference on Machine Learning (pp. 8007-8019). PMLR.

[b-bayesian-radio] L. Maggi, A. Valcarce and J. Hoydis, "Bayesian Optimization for

Radio Resource Management: Open Loop Power Control," in IEEE

Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 1858-

1871, July 2021, doi: 10.1109/JSAC.2021.3078490.

[b-capacity-allocation] D. Bega, M. Gramaglia, M. Fiore, A. Banchs and X. Costa-Perez,

"AZTEC: Anticipatory Capacity Allocation for Zero-Touch Network

Slicing," IEEE INFOCOM 2020 - IEEE Conference on Computer

Communications, 2020, pp. 794-803, doi:

10.1109/INFOCOM41043.2020.9155299.

[b-CDNSim] K. Stamos, G. Pallis, A. Vakali: “Integrating Caching Techniques on

a Content Distribution Network”. In Proceedings of the 10th East-

European Conference on Advances in Databases and Information

Systems, LNCS series of Springer Verlag, Thessaloniki, Greece,

September 2006

[b-Chaos Engineering] Kazuyuki Aihara and Ryu Katayama. 1995. Chaos engineering in

Japan. Commun. ACM 38, 11 (Nov. 1995), 103–107.

DOI:https://doi.org/10.1145/219717.219801

https://wiki.onap.org/display/DW/Acumos+DCAE+Integration
https://cloud.google.com/automl

Rec. ITU-T Y.3061 (12/2023) - prepublished version 53

[b-data-fusion] Jens Bleiholder and Felix Naumann. 2009. Data fusion. ACM Comput.

Surv. 41, 1, Article 1 (January 2009), 41 pages.

https://doi.org/10.1145/1456650.1456651

[b-dagsthul] The Dagsthul Artefact Repository,

https://drops.dagstuhl.de/opus/institut_darts.php

[b-Digital-twin] P. Almasan et al., "Network Digital Twin: Context, Enabling

Technologies and Opportunities," in IEEE Communications Magazine,

doi: 10.1109/MCOM.001.2200012.

[b-evolution] Whitley, Darrell. "An overview of evolutionary algorithms: practical

issues and common pitfalls." Information and software technology

43.14 (2001): 817-831.

[b-ETSI GS ZSM 009-1] ETSI GS ZSM 009-1 V1.1.1 (2021-06) Zero-touch network and

Service Management (ZSM); Closed-Loop Automation; Part 1:

Enablers

[b-ETSI-AN] ETSI Whitepaper, Autonomous Networks, supporting tomorrow's

ICT business, October 2020

[b-ETSI-GS-ENI-002] Experiential Networked Intelligence (ENI) (2023-04); ENI

requirements

[b-ETSI GS ENI 005] ETSI GS ENI 005 V2.1.1 (2021-12) “Experiential Networked

Intelligence (ENI); System Architecture”

[b-ETSI GS MEC 012] ETSI GS MEC 012 V2.2.1 (2022-02) “Multi-access Edge Computing

(MEC); Radio Network Information API”

[b-ETSI TS 129 500] ETSI TS 129 500 V15.0.0 (2018-07) 5G; 5G System; Technical

Realization of Service Based Architecture; Stage 3 (3GPP TS 29.500

version 15.0.0 Release 15).

[b-FRINX] FRINX Machine, https://github.com/FRINXio/FRINX-machine

[b-game-theory] Ahmad, I., Kaleem, Z., Narmeen, R., Nguyen, L.D. and Ha, D.B., 2019.

Quality-of-service aware game theory-based uplink power control for

5G heterogeneous networks. Mobile Networks and Applications,

24(2), pp.556-563.

[b-Huebscher 2008] Huebscher, C. and McCann, A. (2008) A Survey of Autonomic

Computing Degrees, Models, and Applications. ACM Computer

Survey, 40, Article No. 7. http://dx.doi.org/10.1145/1380584.1380585

[b-Kephart 2003] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing,” Computer (Long. Beach. Calif)., vol. 36, no. 1, pp. 41–

50, 2003.

[b-Knowledge Graph] ITU AI/ML in 5G Challenge —” Applying knowledge graph and

digital twin technologies to smart optical network”. Online

presentation.

[b-Kubernetes] Kubernetes, Production-Grade Container Orchestration,

https://kubernetes.io/docs/concepts/overview/

[b-large-evolution] Damien Anderson, Paul Harvey, Yusaku Kaneta, Petros Papadopoulos,

Philip Rodgers, and Marc Roper. 2022. Towards evolution-based

autonomy in large-scale systems. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion (GECCO '22).

https://doi.org/10.1145/1456650.1456651
https://drops.dagstuhl.de/opus/institut_darts.php
https://github.com/FRINXio/FRINX-machine
https://kubernetes.io/docs/concepts/overview/

Rec. ITU-T Y.3061 (12/2023) - prepublished version 54

Association for Computing Machinery, New York, NY, USA, 1924–

1925.

[b-LogicNets] Umuroglu et al. "LogicNets: Co-Designed Neural Networks and

Circuits for Extreme-Throughput Applications,

https://arxiv.org/abs/2004.03021

[b-MAPE-K] Computing, A., 2006. An architectural blueprint for autonomic

computing. IBM White Paper, 31(2006), pp.1-6.

[b-Mwanje 2020] Mwanje SS, Mannweiler C, editors. Towards Cognitive Autonomous

Networks: Network Management Automation for 5G and Beyond.

John Wiley & Sons; 2020 Oct 12.

[b-NGMN-5G] NGMN 5G White Paper

[b-NMRG] The Internet Research Task Force (IRTF), Network Management

Research Group NMRG, https://irtf.org/nmrg

[b-ns3] NS-3 Network Simulator, https://www.nsnam.org/

[b-OASIS TOSCA-v1.3] TOSCA Simple Profile in YAML Version 1.3.

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-

YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf.

[b-OODA] J. Boyd, G.T. Hammond, and Air University (U.S.). Press. A

Discourse on Winning and Losing. Air University Press, Curtis E.

LeMay Center for Doctrine Development and Education, 2018.

[b-ONAP] ONAP, Open Network Automation Platform,

https://www.onap.org/about

[b-ONF] Open Network Foundation Mobile Network Projects,

https://opennetworking.org/onf-mobile-projects/

[b-ORAN] The O-RAN Whitepaper 2022 (RAN Intelligent Controller), Rimedo

Labs, https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-

intelligent-controller/

[b-OSM] OSM, Open Source MANO, https://osm.etsi.org/docs/user-

guide/latest/01-quickstart.html

[b-PID] S. Bennett, "Development of the PID controller," in IEEE Control

Systems Magazine, vol. 13, no. 6, pp. 58-62, Dec. 1993, doi:

10.1109/37.248006.

[b-Rossi 2020] F. Rossi, V. Cardellini, and F. Lo Presti, “Hierarchical Scaling of

Microservices in Kubernetes,” 2020 IEEE Int. Conf. Auton. Comput.

Self-Organizing Syst., pp. 28–37, Aug. 2020.

[b-RL] Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An

introduction. MIT press.

[b-TMFORUM-AN-WP] Autonomous Networks: Empowering Digital Transformation For The

Telecoms Industry, whitepaper, May 2019.

https://arxiv.org/abs/2004.03021
https://irtf.org/nmrg
https://www.nsnam.org/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://www.onap.org/about
https://opennetworking.org/onf-mobile-projects/
https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-intelligent-controller/
https://rimedolabs.com/blog/the-oran-whitepaper-2022-ran-intelligent-controller/
https://osm.etsi.org/docs/user-guide/latest/01-quickstart.html
https://osm.etsi.org/docs/user-guide/latest/01-quickstart.html

	1. Scope
	2. References
	3. Definitions
	3.1. Terms defined elsewhere
	3.2. Terms defined in this Recommendation

	4. Abbreviations and acronyms
	5. Conventions
	6. Introduction
	7. Requirements for the architecture
	7.1. Requirements for Exploratory Evolution
	7.2. Requirements for Online Experimentation
	7.3. Requirements for Dynamic Adaptation
	7.4. Requirements for Knowledge
	7.5. Requirements for Autonomous Network Orchestration

	8. Architecture Framework Description
	8.1 High-level Architecture Framework
	8.2 Description of controller
	8.3 Description of the sub-systems and their components
	8.3.1 Autonomy Engine
	8.3.1.1 Exploratory Evolution Subsystem
	8.3.1.1.1 Evolution controller
	8.3.1.2 Experimentation Subsystem
	8.3.1.2.1 Experimentation Controller
	8.3.1.2.2 AN Sandbox

	8.3.2 Dynamic Adaptation Subsystem
	8.3.2.1 Adaptation Controller
	8.3.2.2 Operation Controller
	8.3.2.3 Service Endpoints

	8.3.3 Knowledge Base subsystem
	8.3.4 AN Orchestrator
	8.3.5 Underlay Network
	8.3.6 E2E Network Orchestrator

	9. Sequence diagrams
	9.1 Exploratory Evolution of Controllers
	9.2 Experimentation for Controllers
	9.3 Dynamic adaptation of Controllers

	10. Security Considerations
	Appendix I An example realisation of the architecture framework for Autonomous Networks with technology specific underlays
	I.1. Examples of deployment locations of controllers
	I.2. Example realisation of Exploratory Evolution
	I.3. Example realisation of Online Experimentation
	I.4. Example realisation of Dynamic Adaptation

	Appendix II Self-reflective use of the AN architecture
	Appendix III External functionalities
	Bibliography

